Inverse Trigonometric Functions

Inverse Function

If $y=f(x)$ and $x=g(y)$ are two functions such that $f(g(y))=y$ and $g(f(y))=x$, then f and y aresaid to be inverse of each other i.e. $g=f^{-1}$
IF $y=f(x)$, then $x=f^{1}(y)$
Inverse Trigonometric Functions
If $y=\sin X$, then $x=\sin ^{-1} y$, similarly for other trigonometric functions.
This is called inverse trigonometric function .
Now, $y=\sin ^{-1}(x), y \in[\pi / 2, \pi / 2]$ and $x \in[-1,1]$.
(i) Thus, $\sin ^{-1} \mathrm{x}$ has infinitely many values for given $\mathrm{x} \in[-1,1]$.
(ii) There is only one value among these values which lies in the interval $[\pi / 2, \pi / 2]$.

Thisvalue is called the principal value.
Domain and Range of Inverse Trigonometric FunctionsGraphs of Inverse Trigonometric Functions

Functions:	Domain	Range
$\sin ^{-1} x$	[-1.1]	- $\left.\frac{\pi}{2} \cdot \frac{\pi}{2}\right]$
$\begin{gathered} \cos ^{-1} \frac{x}{\tan ^{-1}} x \end{gathered}$	$\underset{R}{1-1,11}$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\begin{aligned} & \cot ^{-1}-8 \\ & \sec ^{-1} x \end{aligned}$	$\stackrel{R}{R-\{-1, \mathrm{D}}$	$\begin{gathered} (\alpha, \pi) \\ \left(\alpha, \pi \left\lvert\,-\left\{\frac{\pi}{2}\right\}\right.\right. \end{gathered}$
$\operatorname{cosec}^{-1} k$	$R-\{-1,1)$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$

S.No. Function	Graph

2. $3 . \sin ^{-1} x$

Properties of Inverse Trigonometric Functions Property I

(i) $\sin ^{-1}(\sin \theta)=\theta ; \quad$ if $\theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
(ii) $\cos ^{-1}(\cos \theta)=\theta ; \quad$ if $\theta \in[0, \pi]$
(iii) $\tan ^{-1}(\tan \theta)-\theta ;$ if $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(iv) $\operatorname{cosec}^{-1}(\operatorname{cosec} \theta)=\theta ;$ if $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \theta \neq \theta$
$\begin{array}{ll}\text { (v) } \sec ^{-1}(\sec \theta)=\theta, & \text { if } \theta \in[0, \pi], \theta \neq \frac{\pi}{2} \\ \text { (vi) } \cot ^{-1}(\cot \theta)=\theta ; & \text { if } \theta \in(0, \pi)\end{array}$

Property II

(i) $\sin \left(\sin ^{-1} x\right)=x ;$ if $x \in[-1,1]$
(ii) $\cos \left(\cos ^{-1} x\right)=x ;$ if $x \in[-1,1]$
(iii) $\tan \left(\tan ^{-1} x\right)=x$; if $x \in R$
(iv) $\operatorname{cosec}\left(\operatorname{cosec}^{-1} x\right)=x$; if $x \in(-\infty,-1] \cup[1, \infty)$
(v) $\sec \left(\sec ^{-1} x\right)=x ; \quad$ if $x \in(-\infty,-1] \cup[1, \infty)$
(vi) $\cot \left(\cot ^{-1} x\right)=x ; \quad$ if $x \in R$

Property III

(i) $\sin ^{-1}(-x)=-\sin ^{-1} x ; \quad$ if $x \in[-1,1]$
(ii) $\cos ^{-1}(-x)=\pi-\cos ^{-1} x ; \quad$ if $x \in[-1,1]$
(iii) $\tan ^{-1}(-x)=-\tan ^{-1} x ; \quad$ if $x \in R$
(iv) $\operatorname{cosec}^{-1}(-x)=\pi-\operatorname{cosec}^{-1} x$; if $x \in(-\infty,-1] \cup[1, \infty)$
(v) $\sec ^{-1}(-x)=\pi-\sec ^{-1} x ;$ if $x \in(-\infty,-1] \cup[1, \infty)$
(vi) $\cot ^{-1}(-x)=\pi-\cot ^{-1} x ; \quad$ if $x \in R$

Property IV

(i) $\sin ^{-1}\left(\frac{1}{x}\right)=\operatorname{cosec}^{-1} x$; ff $x \in(-\infty ;-1] \cup[1, \infty)$
(ii) $\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x$; if $x \in(-\infty,-1] \cup[1, \infty)$
(iii) $\tan ^{-1}\left(\frac{1}{x}\right)=\left\{\begin{array}{cl}\cot ^{-1} x ; & \text { if } x>0 \\ -\pi+\cot ^{-1} x ; & \text { if } x<0\end{array}\right.$

Property V

(i) $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$; if $x \in[-1,1]$
(ii) $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$; if $x \in R$
(iii) $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$, if $x \in(-\infty,-1] \cup[1, \infty)$

Property VI

(i) $\sin ^{-1} x+\sin ^{-1} y=\left\{\begin{array}{c}\sin ^{-1}\left\{x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right\} ; \\ \pi-\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) ; \\ -\pi-\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right) ;\end{array}\right.$

$$
\text { if }-1 \leq x, y \leq 1 \text { and } x^{2}+y^{2} \leq 1 \text { or if } x y<0 \text { and } x^{2}+y^{2}>1
$$

$$
\text { if } 0<x, y \leq 1 \text { and } x^{2}+y^{2}>1
$$

$$
\text { if }-1 \leq x, y<0 \text { and } x^{2}+y^{2}>1
$$

(ii) $\sin ^{-1} x-\sin ^{-1} y=\left\{\begin{array}{c}\sin ^{-1}\left\{x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right\} ; \\ \pi-\sin ^{-1}\left\{x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right\} ; \\ -\pi-\sin ^{-1}\left\{x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right\} ;\end{array}\right.$
if $-1 \leq x, y \leq 1$ and $x^{2}+y^{2} \leq 1$ or if $x y>0$ and $x^{2}+y^{2}>1$
if $0<x \leq 1,-1 \leq y \leq 0$ and $x^{2}+y^{2}>1$
if $-1 \leq x<0,0<y \leq 1$ and $x^{2}+y^{2}>1$

Property VII

(i) $\cos ^{-1} x+\cos ^{-1} y$

$$
= \begin{cases}\cos ^{-1}\left\{x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right\} ; & \text { if }-1 \leq x, y \leq 1 \text { and } x+y \geq 0 \\ 2 \pi-\cos ^{-1}\left\{x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right\} ; & \text { if }-1 \leq x, y \leq 1 \text { and } x+y \leq 0\end{cases}
$$

(ii) $\cos ^{-1} x-\cos ^{-1} y$

$$
=\left\{\begin{array}{c}
\cos ^{-1}\left(x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) ; \text { if }-1 \leq x, y \leq 1 \text { and } x \leq y \\
-\cos ^{-1}\left\{x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) ; \text { if }-1 \leq y \leq 0,0<x \leq 1 \text { and } x \geq y
\end{array}\right.
$$

Property VIII

(i) $\tan ^{-1} x+\tan ^{-1} y$

$$
=\left\{\begin{array}{cl}
\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; & \text { if } x y<1 \\
\pi+\tan ^{-3}\left(\frac{x+y}{1-x y}\right) ; & \text { if } x>0, y>0 \text { and } x y>1 \\
-\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; & \text { if } x<0, y<0 \text { and } x y>1
\end{array}\right.
$$

(ii) $\tan ^{-1} x-\tan ^{-1} y$

$$
=\left\{\begin{array}{cl}
\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; & \text { if } x y>-1 \\
\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; & \text { if } x>0, y<0 \text { and } x y<-1 \\
-\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; & \text { if } x<0, y>0 \text { and } x y<-1
\end{array}\right.
$$

Property IX

(i) $\sin ^{-1} x=\cos ^{-1} \sqrt{1-x^{2}}=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}$

$$
=\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)=\operatorname{cosec}^{-1}\left(\frac{1}{x}\right)
$$

(ii) $\cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}=\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}$

$$
\begin{aligned}
& =\cot ^{-1} \frac{x}{\sqrt{1-x^{2}}}=\sec ^{-1}\left(\frac{1}{x}\right) \\
& =\operatorname{cosec}-1\left(\frac{1}{\sqrt{1-x^{2}}}\right)
\end{aligned}
$$

(iii) $\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)=\cot ^{-1}\left(\frac{1}{x}\right)$

$$
=\operatorname{cosec}^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)=\sec ^{-1}\left(\sqrt{1+x^{2}}\right)
$$

Property X

(i) $2 \sin ^{-1} x=\left\{\begin{aligned} \sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) ; & \text { if }-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \pi-\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) ; & \text { if } \frac{1}{\sqrt{2}} \leq x \leq 1 \\ -\pi-\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) ; & \text { if }-1 \leq x \leq-\frac{1}{\sqrt{2}}\end{aligned}\right.$
(ii) $2 \cos ^{-1} x=\left\{\begin{array}{cl}\cos ^{-1}\left(2 x^{2}-1\right) ; & \text { if } 0 \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(2 x^{2}-1\right) ; & \text { if }-1 \leq x \leq \theta\end{array}\right.$
(iii) $2 \tan ^{-1} x=\left\{\begin{array}{cl}\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ; & \text { if }-1<x \leq 1 \\ \pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ; & \text { if } x>1 \\ -\pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ; & \text { if } x<-1\end{array}\right.$

Property XI

(i) $3 \sin ^{-1} x= \begin{cases}\sin ^{-1}\left(3 x-4 x^{3}\right) ; & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ \pi-\sin ^{-1}\left(3 x-4 x^{3}\right) ; & \text { if } \frac{1}{2}<x \leq 1 \\ -\pi-\sin ^{-1}\left(3 x-4 x^{3}\right) ; & \text { if }-1 \leq x<-\frac{1}{2}\end{cases}$
(ii) $3 \cos ^{-1} x= \begin{cases}\cos ^{-1}\left(4 x^{3}-3 x\right) ; & \text { if } \frac{1}{2} \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(4 x^{3}-3 x\right) ; & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 2 \pi+\cos ^{-1}\left(4 x^{2}-3 x\right) ; & \text { if }-1 \leq x \leq-\frac{1}{2}\end{cases}$
(iii) $3 \tan ^{-1} x= \begin{cases}\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) ; & \text { if }-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}} \\ \pi+\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) ; & \text { it } x>\frac{1}{\sqrt{3}} \\ -\pi+\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right) ; & \text { if } x<-\frac{1}{\sqrt{3}}\end{cases}$

Property XII

(i) $2 \tan ^{-1} x= \begin{cases}\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) ; & \text { if }-1 \leq x \leq 1 \\ \pi-\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) ; & \text { if } x>1 \\ -\pi-\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) ; & \text { if } x<-1\end{cases}$
(ii) $2 \tan ^{-1} x=\left\{\begin{array}{cl}\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) ; & \text { if } 0 \leq x<\infty \\ -\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) ; & \text { if }-\infty<x \leq 0\end{array}\right.$

Important Results

(i) $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}\left(\frac{x+y+z-x y z}{1-x y-y z-z x}\right)$
(ii) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, then $x y+y z+z x=1$
(iii) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, then $x+y+z=x y z$
(iv) If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{\pi}{2}$, then $x^{2}+y^{2}+z^{2}+2 x y z=1$
(v) If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, then
$x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z$
(vi) If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then $x y+y z+z x=3$
(vii) If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$, then $x^{2}+y^{2}+z^{2}+2 x y z=1$
(viii) If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, then $x y+y z+z x=3$
(ix) If $\sin ^{-1} x+\sin ^{-1} y=\theta$, then $\cos ^{-1} x+\cos ^{-1} y=\pi-\theta$
(x) If $\cos ^{-1} x+\cos ^{-1} y=\theta$, then $\sin ^{-1} x+\sin ^{-1} y=\pi-\theta$
(xi) If $\tan ^{-1} x+\tan ^{-1} y=\frac{\pi}{2}$, then $x y=1$
(xii) If $\cot ^{-1} x+\cot ^{-1} y=\frac{\pi}{2}$, then $x y=1$
(xiii) If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\theta_{\text {, }}$

$$
\text { then } \frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \theta+\frac{y^{2}}{b^{2}}=\sin ^{2} \theta
$$

(xiv) $\tan ^{-1} x_{1}+\tan ^{-1} x_{2}+\ldots+\tan ^{-1} x_{n}=\tan ^{-1}\left(\frac{S_{1}-S_{8}+S_{5}-\ldots}{1-S_{2}+S_{4}-S_{0}+\ldots}\right)$,

Inverse

Trigonometric Equation
An equation involving one or more trigonometrical ratios of unknown angle is called a trigonometric equation .

Solution/Roots of a Trigonometric Equation

A value of the unknown angle which satisfies the given equation, is called a solution or root ofthe equation.
The trigonometric equation may have infinite number of solutions.
(i) Principal Solution - The least value of unknown angle which satisfies the given equation, is called a principal solution of trigonometric equation.
(ii) General Solution - We know that, trigonometric function are periodic and solution oftrigonometric equations can be generalised with the help of the periodicity of the trigonometricfunctions. The solution consisting of all possible solutions of a trigonometric equation is calledits general solution.

Important Results

(i) $\sin \theta=0 \Rightarrow \theta=n \pi$
(ii) $\cos \theta=0 \Rightarrow \theta=(2 n+1) \frac{\pi}{2}$
(iii) $\tan \theta=0 \Rightarrow \theta=n \pi$
(iv) $\sin \theta=\sin \alpha \Rightarrow \theta=n \pi+(-1)^{n} \alpha$, where $\alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(v) $\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha$, where $\alpha \in[0, \pi]$
(vi) $\tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha_{2}$ where $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(vii) $\sin ^{2} \theta=\sin ^{2} \alpha, \cos ^{2} \theta=\cos ^{2} \alpha, \tan ^{2} \theta=\tan ^{2} \alpha$
$\Rightarrow \quad \theta=n \pi \pm \alpha$
(viii) $\sin \theta=1 \Rightarrow \theta=(4 n+1) \frac{\pi}{2}$
(ix) $\cos \theta=1 \Rightarrow \theta=2 n \pi$
(x) $\cos \theta=-1 \Rightarrow \theta=(2 n+1) \pi$
$\sin \theta=\sin \alpha$ and $\cos \theta=\cos \alpha$
(xi) $\sin \theta=\sin \alpha$ and $\tan \theta=\tan \alpha \Rightarrow \theta=2 n \pi+\alpha$
$\tan \theta=\tan \alpha$ and $\cos \theta=\cos \alpha$

Important Points to be Remembered

(i) While solving an equation, we have to square it, sometimes the resulting roots does notsatisfy the original equation.
(ii) Do not cancel common factors involving the unknown angle on LHS and RHS.Because itmay be the solution of given equation.
(iii) (a) Equation involving $\sec \theta$ or $\tan \theta$ can never be a solution of the form $(2 n+1) \pi / 2$.
(b) Equation involving coseca or cote can never be a solution of the form $\theta=n \pi$.

MCQ

1. $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) 1
2. The value of $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$ is equal to
(a) π
(b) $-\frac{\pi}{2}$
(c) 0
(d) $2 \sqrt{3}$
3. The value of expression $2 \sec ^{-1} 2+\sin ^{-1} \frac{1}{2}$ is
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{7 \pi}{6}$
(d) 1
4. $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=$
(a) $\frac{1}{\sqrt{10}}$
(b) -10
(c) $\frac{1}{10}$
(d) $-\frac{1}{10}$
5. The domain of the function $\cos ^{-1}(2 x-1)$ is
(a) $[0,1]$
(b) $[-1,1]$
(c) $(-1,1)$
(d) $[0, \pi]$
6.if $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1}=3 \pi$ then $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$ equals
(a) 0
(b) 1
(c) 6
(d) 12
6. Domain of the definition of the function $f(x)=\sqrt{\sin ^{-1}(2 x)+\pi / 6}$ is
(a) $\left[-\frac{1}{4}, \frac{1}{2}\right]$
(b) $\left[-\frac{1}{2}, \frac{1}{9}\right]$
(c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(d) $\left[-\frac{1}{4}, \frac{1}{4}\right]$
7. Range of $f(x)=\sin ^{-1} x+\tan ^{-1} x+\sec ^{-1} x$ is
(a) $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
(b) $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
(c) $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
(d) None of these
8. if $\sin ^{-1} x=\theta+\beta$ and $\sin ^{-1} y=\theta-\beta$ then $1+x y$
(a) $\sin ^{2} \theta+\sin ^{2} \beta$ (b)
(b) $\sin ^{2} \theta+\cos ^{2} \beta$ (c) $\cos ^{2} \theta+\cos ^{2} \beta$
(d) $\cos ^{2} \theta+\sin ^{2} \beta$
9. The value of $\sin ^{-1} \cos \frac{33 \pi}{5}$ is
(a) $\frac{3 \pi}{5}$
(b) $-\frac{7 \pi}{5}$
(c) $\frac{\pi}{10}$
(d) $-\frac{\pi}{10}$
10. $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(a) $\frac{7 \pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{6}$
11. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ is
(a) $-\frac{2 \pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{4 \pi}{3}$
(d) $\frac{\pi}{3}$
13.The value of $\cos ^{-1}\left(-\sin \frac{7 \pi}{6}\right)$ is
(a) $\frac{5 \pi}{3}$
(b) $\frac{7 \pi}{6}$
(c) $\frac{\pi}{3}$
(d) None of these
12. The value of $\cos ^{-1}\left(\cos \frac{3 \pi}{2}\right)$ is equal to
(a) $\frac{\pi}{2}$
(b) $\frac{3 \pi}{2}$
(c) $\frac{5 \pi}{2}$
(d) $\frac{7 \pi}{2}$
13. if $\pi \leq x \leq 2 x$ then $\cos ^{-1}(\cos x)$ is equal to
(a) x
(b) $-x$
(c) $2 \pi+x$
(d) $2 \pi-x$
14. $\sin \left(\tan ^{-1} x\right),|x|<1$ equal to
(a) $\frac{x}{\sqrt{1-x^{2}}}$
(b) $\frac{1}{\sqrt{1-x^{2}}}$
(c) $\frac{1}{\sqrt{1+x^{2}}}$
(d) $\frac{x}{\sqrt{1+x^{2}}}$
15. if x takes non positive permissible value, then $\sin ^{-1} x=$
(a) $\cos ^{-1} \sqrt{1-x^{2}}$
(b) $-\cos ^{-1} \sqrt{1-x^{2}}$
(c) $\cos ^{-1} \sqrt{x^{2}-1}$
(d) $\pi-\cos ^{-1} \sqrt{1-x^{2}}$
16. if $\sin ^{-1} x=\frac{\pi}{5}$ for some $x \in(-1,1)$ then the value of $\cos ^{-1} x$ is
(a) $\frac{3 \pi}{10}$
(b) $\frac{5 \pi}{10}$
(c) $\frac{7 \pi}{10}$
(d) $\frac{9 \pi}{10}$
17. $\cos ^{-1}\left\{\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right\}=$
(a) $\frac{3 \pi}{20}$
(b) $\frac{7 \pi}{20}$
(c) $\frac{7 \pi}{10}$
(d) $\frac{17 \pi}{20}$
18. The values of x satisfying $\tan \left(\sec ^{-1} x\right)=\sin \left(\cos ^{-1} \frac{1}{\sqrt{5}}\right)$ is/are
(a) $\frac{\sqrt{5}}{3}$
(b) $\frac{3}{\sqrt{5}}$
(c) $-\frac{\sqrt{5}}{3}$
(d) $-\frac{3}{\sqrt{5}}$
19. $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)=$
(a) 5
(b) 13
(c) 15
(d) 6
$22 \cdot \sin ^{-1} \frac{\sqrt{x}}{\sqrt{x+a}}$ is equal to
(a) $\cos ^{-1} \sqrt{\frac{x}{a}}$
(b) $\operatorname{cosec}^{-1} \sqrt{\frac{x}{a}}$
(c) $\tan ^{-1} \sqrt{\frac{x}{a}}$
(d) None of these
20. if $x \in\left(\frac{3 \pi}{2}, 2 \pi\right)$ then value of expression $\sin ^{-1}\left(\cos \left(\cos ^{-1}(\cos x)+\sin ^{-1}(\sin x)\right)\right)$ equals
(a) $-\frac{\pi}{2}$
(b) $\frac{\pi}{2}$
(c) 0
(d) None of these
21. $\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$, then x is equal to
(a) $0, \frac{1}{2}$
(b) $1, \frac{1}{2}$
(c) 0
(d) $\frac{1}{2}$
25.if $f(x)=\sin ^{-1} x+\cos ^{-1} x+\tan ^{-1} x+\cot ^{-1} x+\sec ^{-1} x$ then $\mathrm{f}(\mathrm{x})$ lies in the interval
(a) $[\pi, 2 \pi]$
(b) $(\pi, 2 \pi)$
(c) $\left[\pi, \frac{3 \pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right]$
(d) None of these
22. if $\cos ^{-1} x+\cos ^{-1} y=2 \pi$ then $\sin ^{-1} x+\sin ^{-1} y$ is equal to
(a) π
(b) $-\pi$
(c) $\frac{\pi}{2}$
(d) None of these
23. if $3 \tan ^{-1} x+\cot ^{-1} x=\pi$ then x equals
(a) 0
(b) 1
(c) -1
(d) $\frac{1}{2}$
24. if $\cos \left(\sin ^{-1} \frac{2}{5}+\cos ^{-1} x\right)=0$ then x is equal to
(a) $\frac{1}{5}$
(b) $\frac{2}{5}$
(c) 0
(d) 1
25. The value of x for which $\cos ^{-1}(\cos 4)>3 x^{2}-4 x$, is
(a) $\left(0, \frac{2+\sqrt{6 \pi-8}}{3}\right)$
(b) $\left(\frac{2-\sqrt{6 \pi-8}}{3}, 0\right)$
(c) $(-2,2)$
(d) $\left(\frac{2-\sqrt{6 \pi-8}}{3}, \frac{2+\sqrt{6 \pi-8}}{3}\right)$

ANSWERS

1	\mathbf{d}	2	\mathbf{b}	3	\mathbf{b}	4	\mathbf{a}	5	\mathbf{a}	6	\mathbf{c}	7	\mathbf{a}	8	\mathbf{c}	9	\mathbf{b}
10	\mathbf{d}	11	\mathbf{d}	12	\mathbf{d}	13	\mathbf{c}	14	\mathbf{a}	15	\mathbf{d}	16	\mathbf{d}	17	\mathbf{b}	18	\mathbf{a}
19	\mathbf{d}	20	\mathbf{b}	21	\mathbf{c}	22	\mathbf{c}	23	\mathbf{b}	24	\mathbf{c}	25	\mathbf{c}	26	\mathbf{b}	27	\mathbf{b}
28	\mathbf{b}	29	\mathbf{d}														

