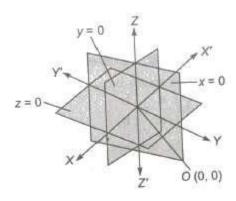
Three Dimensional Geometry

Coordinate System

The three mutually perpendicular lines in a space which divides the space into eight parts and if these perpendicular lines are the coordinate axes, then it is said to be a coordinate system.



Sign Convention

Octant Coordinate	x	y	Z				
OXYZ	+	+	+				
OX'YZ	-	+	+				
OXY'Z	+	-					
OXYZ'	+	+	9				
OX'Y'Z	-	=					
OX'YZ'		+:					
OXY'Z'	+	-					
OX'Y'Z'	-	(E)	- 2				

Distance between Two Points

Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be two given points. The distance between these points is given by $PQ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

The distance of a point P(x, y, z) from origin O is $OP = \sqrt{x^2 + y^2 + z^2}$

Section Formulae

- (i) The coordinates of any point, which divides the join of points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_1)$ in the ratio x_1 in the ratio x_2 in the ratio x_2 in the ratio x_1 in the ratio x_1 in the ratio x_2 in the ratio x_1 in the ratio x_1 in the ratio x_2 in the ratio x_1 in the ratio x_2 in the ratio x_1 in the ratio x_1 in the ratio x_1 in the ratio x_1 in the ratio x_1
- z_2) in the ratio m: n internally are $(mx_2 + nx_1 / m + n, my_2 + ny_1 / m + n, mz_2 + nz_1 / m + n)$
- (ii) The coordinates of any point, which divides the join of points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_1)$
- z_2) in the ratio m: n externally are $(mx_2 nx_1 / m n, my_2 ny_1 / m n, mz_2 nz_1 / m n)$
- (iii) The coordinates of mid-point of P and Q are $(x_1 + x_2 / 2, y_1 + y_2 / 2, z_1 + z_2 / 2)$

(iv) Coordinates of the centroid of a triangle formed with vertices $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ and

$$R(x_3, y_3, z_3)$$
 are $(x_1 + x_2 + x_3 / 3, y_1 + y_2 + y_3 / 3, z_1 + z_2 + z_3 / 3)$

(v) Centroid of a Tetrahedron

If (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) and (x_4, y_4, z_4) are the vertices of a tetrahedron, then its centroid G is given by $(x_1 + x_2 + x_3 + x_4 / 4, y_1 + y_2 + y_3 + y_4 / 4, z_1 + z_2 + z_3 + z_4 / 4)$

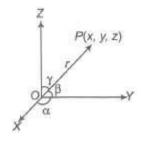
Direction Cosines

If a directed line segment OP makes angle α , β and γ with OX , OY and OZ respectively, then Cos α , cos β and cos γ are called direction cosines of up and it is represented by l, m, n.

i.e.,

 $1 = \cos \alpha$

 $m = \cos \beta$ and $n = \cos \gamma$



If OP = r, then coordinates of OP are (lr, mr, nr)

- (i) If 1, m, n are direction cosines of a vector r, then
- (a) $r = |r| (li + mj + nk) \Rightarrow r = li + mj + nk$
- (b) $l^2 + m^2 + n^2 = 1$
- (c) Projections of r on the coordinate axes are
- (d) $|\mathbf{r}| = 1|\mathbf{r}|$, $m|\mathbf{r}|$, $n|\mathbf{r}|$ / $\sqrt{\text{sum of the squares of projections of r on the coordinate axes}}$
- (ii) If $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are two points, such that the direction cosines of PQ are 1, m, n. Then, $x_2 x_1 = l|PQ|$, $y_2 y_1 = m|PQ|$, $z_2 z_1 = n|PQ|$ These are projections of PQ on X , Y and Z axes, respectively.
- (iii) If 1, m, n are direction cosines of a vector r and a b, c are three numbers, such that 1/a = m/b = n/c.

Then, we say that the direction ratio of r are proportional to a, b, Also, we have $l = a / \sqrt{a_2 + b_2 + c_2}$, $m = b / \sqrt{a_2 + b_2 + c_2}$, $n = c / \sqrt{a_2 + b_2 + c_2}$

- (iv) If θ is the angle between two lines having direction cosines l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , then $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$
- (a) Lines are parallel, if l_1 / l_2 = m_1 / m_2 = n_1 / n_2
- (b) Lines are perpendicular, if $l_1 l_2 + m_1 m_2 + n_1 n_2$
- (v) If θ is the angle between two lines whose direction ratios are proportional to a_1 , b_1 , c_1 and a_2 , b_2 , c_2 respectively, then the angle θ between them is given by $\cos\theta = a_1a_2 + b_1b_2 + c_1c_2/\sqrt{a^2}_1 + b^2_1 + c^2_1\sqrt{a^2}_2 + b^2_2 + c^2_2$

Lines are parallel, if $a_1 / a_2 = b_1 / b_2 = c_1 / c_2$

Lines are perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

- (vi) The projection of the line segment joining points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ to the line having direction cosines 1, m, n is $|(x_2 x_1)l + (y_2 y_1)m + (z_2 z_1)n|$.
- (vii) The direction ratio of the line passing through points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are proportional to $x_2 x_1$, $y_2 y_1 z_2 z_1$

Then, direction cosines of PQ are $x_2 - x_1 / |PQ|$, $y_2 - y_1 / |PQ|$, $z_2 - z_1 / |PQ|$

Area of Triangle

If the vertices of a triangle be $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$, then

Area of
$$\triangle ABC = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$$
 where, $\Delta x = \frac{1}{2} \begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix}$, $\Delta y = \frac{1}{2} \begin{vmatrix} x_1 & z_1 & 1 \\ x_2 & z_2 & 1 \\ x_3 & z_3 & 1 \end{vmatrix}$ and $\Delta z = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

Angle Between Two Intersecting Lines

If $l(x_1, m_1, n_1)$ and $l(x_2, m_2, n_2)$ be the direction cosines of two given lines, then the angle θ between them is given by $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

- (i) The angle between any two diagonals of a cube is $\cos -1$ (1 / 3).
- (ii) The angle between a diagonal of a cube and the diagonal of a face (of the cube is cos-1 $(\sqrt{2}/3)$

Straight Line in Space

The two equations of the line ax + by + cz + d = 0 and a'x + b'y + c'z + d' = 0 together represents a straight line.

1. Equation of a straight line passing through a fixed point $A(x_1, y_1, z_1)$ and having direction ratios a, b, c is given by $x - x_1 / a = y - y_1 / b = z - z_1 / c$, it is also called the symmetrically form of a line.

Any point P on this line may be taken as $(x_1 + \lambda a, y_1 + \lambda b, z_1 + \lambda c)$, where $\lambda \in R$ is parameter. If a, b, c are replaced by direction cosines 1, m, n, then λ , represents distance of the point P from the fixed point A.

- 2. Equation of a straight line joining two fixed points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is given by $x x_1 / x_2 x_1 = y y_1 / y_2 y_1 = z z_1 / z_2 z_1$
- 3. Vector equation of a line passing through a point with position vector a and parallel to vector b is $r = a + \lambda b$, where A, is a parameter.

- 4. Vector equation of a line passing through two given points having position vectors a and b is $r = a + \lambda (b a)$, where λ is a parameter.
- 5. (a) The length of the perpendicular from a point $P(\vec{a})$ on the line $r a + \lambda$ b is given by

$$\sqrt{|\vec{\alpha} - \mathbf{a}|^2 - \left\{ \frac{(\vec{\alpha} - \mathbf{a}) \cdot \mathbf{b}}{|\mathbf{b}|} \right\}^2}$$

(b) The length of the perpendicular from a point $P(x_1, y_1, z_1)$ on the line

$$\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n} \text{ is given by}$$

$$\{(a-x_1)^2 + (b-y_1)^2 + (c-z_1)^2\} - \{(a-x_1)l + (b-y_1)m + (c-z_1)n\}^2$$

where, 1, m, n are direction cosines of the line.

- 6. Skew Lines Two straight lines in space are said to be skew lines, if they are neither parallel nor intersecting.
- 7. Shortest Distance If l_1 and l_2 are two skew lines, then a line perpendicular to each of lines 4 and 12 is known as the line of shortest distance.

If the line of shortest distance intersects the lines l_1 and l_2 at P and Q respectively, then the distance PQ between points P and Q is known as the shortest distance between l_1 and l_2 .

8. The shortest distance between the lines

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$$
and
$$\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2} \text{ is given by}$$

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix}$$

$$d = \frac{1}{\sqrt{(m_1 n_2 - m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2 + (l_1 m_2 - l_2 m_1)^2}}$$

9. The shortest distance between lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ is given by

$$d = \frac{(\mathbf{b}_1 \times \mathbf{b}_2) \cdot (\mathbf{a}_2 - \mathbf{a}_1)}{|\mathbf{b}_1 \times \mathbf{b}_2|}$$

10. The shortest distance parallel lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ is given by

$$d = \frac{(\mathbf{a}_2 - \mathbf{a}_1) \times \mathbf{b}}{|\mathbf{b}|}$$

- 11. Lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ are intersecting lines, if $(b_1 * b_2) * (a_2 a_1) = 0$.
- 12. The image or reflection (x, y, z) of a point (x_1, y_1, z_1) in a plane ax + by + cz + d = 0 is given by $x x_1 / a = y y_1 / b = z z_1 / c = -2 (ax_1 + by_1 + cz_1 + d) / a_2 + b_2 + c_2$
- 13. The foot (x, y, z) of a point (x_1, y_1, z_1) in a plane ax + by + cz + d = 0 is given by $x x_1 / a = y y_1 / b = z z_1 / c = -(ax_1 + by_1 + cz_1 + d) / a_2 + b_2 + c_2$
- 14. Since, x, y and z-axes pass through the origin and have direction cosines (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Therefore, their equations are

$$x - axis : x - 0 / 1 = y - 0 / 0 = z - 0 / 0$$

$$y - axis : x - 0 / 0 = y - 0 / 1 = z - 0 / 0z - axis : x - 0 / 0 = y - 0 / 0 = z - 0 / 1$$

Plane

A plane is a surface such that, if two points are taken on it, a straight line joining them lies wholly in the surface.

General Equation of the Plane

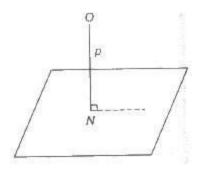
The general equation of the first degree in x, y, z always represents a plane. Hence, the general equation of the plane is ax + by + cz + d = 0. The coefficient of x, y and z in the cartesian equation of a plane are the direction ratios of normal to the plane.

Equation of the Plane Passing Through a Fixed Point

The equation of a plane passing through a given point (x_1, y_1, z_1) is given by $a(x - x_1) + b$ $(y - y_1) + c$ $(z - z_1) = 0$.

Normal Form of the Equation of Plane

- (i) The equation of a plane, which is at a distance p from origin and the direction cosines of the normal from the origin to the plane are l, m, n is given by lx + my + nz = p.
- (ii) The coordinates of foot of perpendicular N from the origin on the plane are (1p, mp, np).



Intercept Form

The intercept form of equation of plane represented in the form of x / a + y / b + z / c = 1 where, a, b and c are intercepts on X, Y and Z-axes, respectively.

For x intercept Put y = 0, z = 0 in the equation of the plane and obtain the value of x. Similarly, we can determine for other intercepts.

Equation of Planes with Given Conditions

(i) Equation of a plane passing through the point $A(x_1, y_1, z_1)$ and parallel to two given lines with direction ratios

$$a_1, b_1, c_1 \text{ and } a_2, b_2, c_2 \text{ is} \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$$

(ii) Equation of a plane through two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ and parallel to a line with direction ratios a, b, c is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a & b & c \end{vmatrix} = 0.$$

(iii) The Equation of a plane passing through three points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

(iv) Four points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, $C(x_3, y_3, z_3)$ and $D(x_4, y_4, z_4)$ are coplanar if and only if

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix} = 0.$$

(v) Equation of the plane containing two coplanar lines

and
$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$

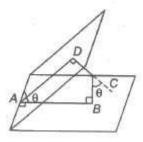
$$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} \text{ is}$$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$$

Angle between Two Planes

The angle between two planes is defined as the angle between the normal to them from any point.

Thus, the angle between the two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$



is equal to the angle between the normals with direction cosines $\pm a_1/\sqrt{\Sigma} \ a_1^2, \pm b_1/\sqrt{\Sigma} \ a_1^2, \pm c_1/\sqrt{\Sigma} \ a_1^2$ and $\pm a_2/\sqrt{\Sigma} \ a_2^2, \pm b_2/\sqrt{\Sigma} \ a_2^2, \pm c_2/\sqrt{\Sigma} \ a_2^2$

If θ is the angle between the normals, then $\cos \theta = \pm a_1 a_2 + b_1 b_2 + c_1 c_2 / \sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}$

Parallelism and Perpendicularity of Two Planes

Two planes are parallel or perpendicular according as the normals to them are parallel or perpendicular.

Hence, the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are parallel, if $a_1 / a_2 = b_1 / b_2 = c_1 / c_2$ and perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

Note The equation of plane parallel to a given plane ax + by + cz + d = 0 is given by ax + by + cz + k = 0, where k may be determined from given conditions.

Angle between a Line and a Plane

In Vector Form The angle between a line $r = a + \lambda b$ and plane $r * \bullet n = d$, is defined as the complement of the angle between the line and normal to the plane:

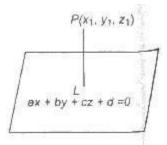
$$\sin \theta = n * b / |n||b|$$

In Cartesian Form The angle between a line $x - x_1 / a_1 = y - y_1 / b_1 = z - z_1 / c_1$ and plane $a_2x + b_2y + c_2z + d_2 = 0$ is $\sin\theta = a_1a_2 + b_1b_2 + c_1c / \sqrt{a^2}_1 + b^2_1 + c^2_1 \sqrt{a^2}_2 + b^2_2 + c^2_2$

Distance of a Point from a Plane

Let the plane in the general form be ax + by + cz + d = 0. The distance of the point $P(x_1, y_1, z_1)$ from the plane is equal to

$$\frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}}$$



If the plane is given in, normal form lx + my + nz = p. Then, the distance of the point $P(x_1, y_1, z_1)$ from the plane is $|lx_1 + my_1 + nz_1 - p|$.

Distance between Two Parallel Planes

If ax + by + cz + d1 = 0 and $ax + by + cz + d_2 = 0$ be equation of two parallel planes. Then, the distance between them is

$$\frac{d_2 - d_1}{\sqrt{a^2 + b^2 + c^2}}$$

Bisectors of Angles between Two Planes

The bisector planes of the angles between the planes $a_1x + b_1y + c_1z + d_1 = 0$, $a_2x + b_2y + c_2z + d_2 = 0$ is $a_1x + b_1y + c_1z + d_1/\sqrt{\Sigma}a_1^2 = \pm a_2x + b_2y + c_2z + d_2/\sqrt{\Sigma}a_2^2$

One of these planes will bisect the acute angle and the other obtuse angle between the given plane.

Sphere

A sphere is the locus of a point which moves in a space in such a way that its distance from a fixed point always remains constant.

General Equation of the Sphere

In Cartesian Form

The equation of the sphere with centre (a, b, c) and radius r is $(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2 \dots (i)$

In generally, we can write $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ Here, its centre is (-u, v, w) and radius = $\sqrt{u^2 + v^2 + w^2} - d$

In Vector Form

The vector equation of a sphere of radius a and Centre having position vector c is $|\mathbf{r} - \mathbf{c}| = \mathbf{a}$

Important Points to be Remembered

- (i) The general equation of second degree in x, y, z is $ax^2 + by^2 + cz^2 + 2hxy + 2kyz + 2lzx + 2ux + 2vy + 2wz + d = 0$ represents a sphere, if
- (a) $a = b = c \neq 0$
- (b) h = k = 1 = 0

The equation becomes $ax^2 + ay^2 + az^2 + 2ux + 2vy + 2wz + d - 0$...(A)

To find its centre and radius first we make the coefficients of x^2 , y^2 and z^2 each unity by dividing throughout by a.

Thus, we have $x^2+y^2+z^2+(2u/a)x+(2v/a)y+(2w/a)z+d/a=0$(B)

- : Centre is (-u/a, -v/a, -w/a)and radius = $\sqrt{u^2/a^2 + v^2/a^2 + w^2/a^2 - d/a}$ = $\sqrt{u^2 + v^2 + w^2 - ad/|a|}$.
- (ii) Any sphere concentric with the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ is $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + k = 0$
- (iii) Since, $r^2 = u^2 + v^2 + w^2$ d, therefore, the Eq. (B) represents a real sphere, if $u^2 + v^2 + w^2 d > 0$
- (iv) The equation of a sphere on the line joining two points (x_1, y_1, z_1) and (x_2, y_2, z_2) as a diameter is

$$(x-x_1)(x-x_1)+(y-y_1)(y-y_2)+(z-z_1)(z-z_2)=0.$$

(v) The equation of a sphere passing through four non-coplanar points (x_1, y_1, z_1) , (x_2, y_2, z_2) ,

 (x_3, y_3, z_3) and (x_4, y_4, z_4) is

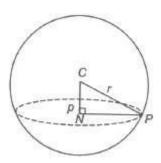
$$\begin{vmatrix} x^2 + y^2 + z^2 & x & y & z & 1 \\ x_1^2 + y_1^2 + z_1^2 & x_1 & y_1 & z_1 & 1 \\ x_2^2 + y_2^2 + z_2^2 & x_2 & y_2 & z_2 & 1 \\ x_3^2 + y_3^2 + z_3^2 & x_3 & y_3 & z_3 & 1 \\ x_4^2 + y_4^2 + z_4^2 & x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0$$

Tangency of a Plane to a Sphere

The plane lx + my + nz = p will touch the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$, if length of the perpendicular from the centre (-u, -v, -w)= radius, i.e., |lu - mv - nw - v| $p|/\sqrt{l^2 + m^2 + n^2}$ $= \sqrt{u^2 + v^2 + w^2 - d} (lu - mv - nw - p)^2 = (u^2 + v^2 + w^2 - d) (l^2 + m^2 + n^2)$

Plane Section of a Sphere

Consider a sphere intersected by a plane. The set of points common to both sphere and plane is called a plane section of a sphere. In ΔCNP , $NP^2 = CP^2 - CN^2 = r^2 - p^2$ $\therefore NP = \sqrt{r^2 - p^2}$



Hence, the locus of P is a circle whose centre is at the point N, the foot of the perpendicular from the centre of the sphere to the plane.

The section of sphere by a plane through its centre is called a great circle. The centre and radius of a great circle are the same as those of the sphere.

MCQS

1. if the planes x+2y+kz=0 and 2x+y-2z=0 are at rt. angles, then the value of k is:

(a)
$$\frac{-1}{2}$$

(b)
$$\frac{1}{2}$$
 (c) -2

2. The angle between two lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$ and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$ is

(a)
$$cos^{-1}\left(\frac{1}{9}\right)$$

(b)
$$cos^{-1}\left(\frac{2}{9}\right)$$

$$(c)cos^{-1}\left(\frac{3}{9}\right)$$

(b)
$$cos^{-1}\left(\frac{2}{9}\right)$$
 (c) $cos^{-1}\left(\frac{3}{9}\right)$ (d) $cos^{-1}\left(\frac{4}{9}\right)$

3. The equation of the line through the point (1,2,3) and parallel to the line $\frac{x-4}{2} = \frac{y+1}{-3} =$

(a)
$$\frac{x-4}{2} = \frac{y+1}{2} = \frac{z+10}{3}$$
 (b) $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{6}$ (c) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ (d) None of

(b)
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{6}$$

(c)
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

these

4. The equation of the line joining the points (-2,4,2) and (7,-2,5) are

(a)
$$\frac{x+2}{3} = \frac{y-4}{-2} = \frac{z-2}{1}$$
 (b) $\frac{x}{7} = \frac{y}{-2} = \frac{z}{5}$ (c) $\frac{x}{-2} = \frac{y}{4} = \frac{z}{2}$

(b)
$$\frac{x}{7} = \frac{y}{-2} = \frac{z}{5}$$

$$(c)\frac{x}{-2} = \frac{y}{4} = \frac{z}{2}$$

(d) None of

these

5. The lines
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
 and $\frac{x}{2} = \frac{y+2}{2} = \frac{z-3}{-2}$ are:

- (a) at rt. angles
- (b) skew
- (c) parallel
- (d) intersecting

6. Lines
$$\vec{r} = \overrightarrow{a_1} + t\overrightarrow{b_1}$$
 and $\vec{r} = \overrightarrow{a_2} + s\overrightarrow{b_2}$ are parallel iff:

- (a) $\overrightarrow{b_1} = \lambda \overrightarrow{b_2}$ for some real λ (b) $\overrightarrow{b_2}$ is parallel to $\overrightarrow{a_2} \overrightarrow{a_1}$
- (c) $\overrightarrow{b_1}$ is parallel to $\overrightarrow{a_2} \overrightarrow{a_1}$ (d) None of these

- 7. Skew lines are:
- (a) non-coplanar lines

(b) coplanar lines

(c) perpendicular lines

(d) parallel lines

8. The projections of a line segment on x,y, z axes are 12, 4, 3. The length and the direction-cosines of the line segments are:

9. Given the line L: $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and the planes : x - 2y - z = 0, of the following assertions, the only that is always true is:

- (a) L is parallel to π
- (b) L is perpendicular to π (c) L lies in π
- (d) None of

these

10. Equation of the line passing through (1, 1, 1) and perpendicular to 2x+3y+z=5 is:

(a)
$$\frac{x-1}{-1} = \frac{y-1}{1} = \frac{z-1}{1}$$
 (b) $\frac{x-1}{1} = \frac{y-1}{3} = \frac{z-1}{2}$

(b)
$$\frac{x-1}{1} = \frac{y-1}{3} = \frac{z-1}{2}$$

$$(c)^{\frac{x-1}{3}} = \frac{y-1}{3} = \frac{z-1}{1}$$

(d)
$$\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{1}$$

11. Three lines drawn from origin with direction cosines l_1 , m_1 , n_1 ; l_2 , m_2 , n_2 ; l_3 , m_3 , n_3

are coplanar iff:
$$\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} = 0$$
 since:

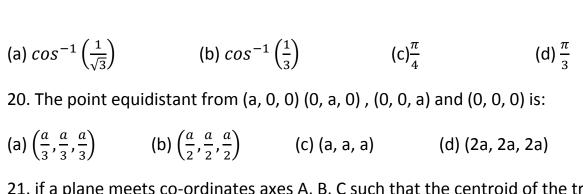
(c) all lines passes th	rough origin	(c	(d) None of these							
12. The plane ax+by-triangle is:	+cz=1 meets the o	co-ordina	ates axes in	A, B ,C. The centroid of the						
(a) (3a, 3b, 3c)	(b) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$	(0	$\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$	(d) $\left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right)$						
13. The equation of $b(y - y_1) + c(z - z_1)$		ing the I	$ine \frac{x - x_1}{l} = \frac{3}{2}$	$\frac{y - y_1}{m} = \frac{z - z_1}{n}$ is $a(x - x_1) +$						
(a) $ax_1 + by_1 + cz_1$ $nz_1 = 0$	(b) al + bm +	- cn=0 (d	$c)\frac{a}{l} = \frac{b}{m} = \frac{c}{m}$	(d) $1x_1 + my_1 +$						
14. The two lines $x = $ perpendicular if and		+ d , an	dx = a'y -	+b',z=c'y+d' will be						
(a) $aa' + bb' + cc'$	= 0	(k	(a + a')((b + b') + (c + c') = 0						
(c) $aa' + cc' + 1 =$	0	(0	(d) $aa' + bb' + cc' + 1 = 0$							
15. The line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies exactly on the plane 2x-4y+z=7, then the value of k is:										
(a) 7 (k	o) -7	(c) 1	1	d) No real value						
16. A line makes som with y-axis is such th				is .if the angle , which it makes s:						
(a) $\frac{2}{3}$ (k	o) ¹ / ₅	$(c)\frac{3}{5}$	1	(d) $\frac{2}{5}$						
17. Distance between two parallel planes: 2x+y+2z=8 and 4x+2y+4z+5=0 is:										
(a) $\frac{3}{2}$ (k	$(5) \frac{5}{2}$	$(c)^{\frac{7}{2}}$	f	(d) $\frac{9}{2}$						
18. The direction -raccorner are (when the				oins the origin to the opposite coordinate axes):						
(a) $<\frac{2}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$ > (b)	o) <1, 1, 1>	(c) <2, -	2, 1>	(d) <1, 2, 3>						

(b) it is possible to find a line perpendicular to

(a) intersecting lines are coplanar

19. Angle between diagonals of a cube is:

all these lines



21. if a plane meets co-ordinates axes A, B, C such that the centroid of the triangle is $(1, k^2)$ then equation of the plane is:

(a)
$$x + ky + k^2z = 3k^2$$
 (b) $k^2x + ky + z = 3k^2$ (c) $x + ky + k^2z = 3$ (d) $k^2x + ky + z = 3$

22. The points (5, 2, 4), (6, -1, 2) and (8, -7, k) are collinear if k is equal to:

23. The angle between the lines 2x = 3y = -z and 6x = -y = -4z is:

(a)
$$90^{\circ}$$
 (b) 0° (c) 30° (d) 45°

24. The two lines ax + +b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other if:

(a)
$$aa' + cc' = -1$$
 (b) $aa' + cc' = 1$ (c) $\frac{a}{a'} + \frac{c}{c'} = -1$ (d) $\frac{a}{a'} + \frac{c}{c'} = 1$

25. A plane passes through (1, -2, 1) and is perpendicular to the planes 2x-2y+z=0 and x-y+2z=4. The distance of the plane from the point (1, 2, 20) is:

(a) 0 (b) 1 (c)
$$\sqrt{2}$$
 (d) $2\sqrt{2}$

26. Let L be the line of intersection of the planes 2x+3y+z=1 and x+3y+2z=2 .if L makes an angle α with the x-axis then $\cos\alpha$ equals:

(a)
$$\frac{1}{2}$$
 (b) 1 (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{1}{\sqrt{3}}$

27. The distance between the line: $\vec{r}=2\hat{\imath}-2\hat{\jmath}+3\hat{k}+\lambda(\hat{\imath}-\hat{\jmath}-4\hat{k})$ and the plane $\vec{r}.(\hat{\imath}+5\hat{\jmath}+\hat{k})=5$ is:

(a)
$$\frac{10}{3\sqrt{3}}$$
 (b) $\frac{10}{9}$ (c) $\frac{10}{3}$

ANSWERS

1	d	2	d	3	b	4	a	5	a	6	a	7	a	8	c	9	c
10	d	11	a	12	d	13	b	14	c	15	a	16	d	17	c	18	b
19	b	20	b	21	b	22	d	23	a	24	a	25	d	26	d	27	a