Application of Integrals

Let f(x) be a function defined on the interval [a, b] and F(x) be its anti-derivative. Then,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

The above is called the second fundamental theorem of calculus.

 $\int_{a}^{b} f(x) dx$ is defined as the definite integral of f(x) from x = a to x = b. The numbers and b are called limits of integration. We write

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Evaluation of Definite Integrals by Substitution

Consider a definite integral of the following form

$$\int_a^b f[g(x)] \cdot g'(x) \, dx$$

Step 1 Substitute g(x) = t

 \Rightarrow g'(x) dx = dt

Step 2 Find the limits of integration in new system of variable i.e. the lower limit is g(a) and the upper limit is g(b) and the g(b) integral is now $\int_{g(a)}^{g(b)} f(t) dt$.

Step 3 Evaluate the integral, so obtained by usual method.

Properties of Definite Integral

- 1. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$ $2. \int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx$ 3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$, where a < c < bGeneralization If $a < c_1 < c_2 < \ldots < c_{n-1} < c_n < b$, then $\int_{a}^{b} f(x) \, dx = \int_{a}^{c_1} f(x) \, dx + \int_{c_1}^{c_2} f(x) \, dx + \int_{c_2}^{c_3} f(x) \, dx$ $+ \ldots + \int_{c_{n-1}}^{c_n} f(x) \, dx + \int_{c_n}^{b} f(x) \, dx$ $4. \int_{a}^{a} f(x) \, dx = 0$ 5. $\int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx$ Deduction $\int_{0}^{a} \frac{f(x)}{f(x) + f(a - x)} dx = \frac{a}{2}$ 6. $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ Deduction $\int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} dx = \frac{b - a}{2}$ 7. $\int_{a}^{2a} f(x) dx = \int_{a}^{a} f(x) dx + \int_{a}^{a} f(2a - x) dx$ 8. $\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(-x) dx$ 9. $\int_{0}^{2a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx \text{ if, } f(2a - x) = f(x) \\ 0, \qquad \text{if } f(2a - x) = -f(x) \end{cases}$ $\int_{a}^{b} f(x) \, dx = \begin{cases} 0, \text{ if } f(a+x) = -f(b-x) \\ 2 \int_{a}^{a+b} f(x) \, dx, \text{ if } f(a+x) = f(b-x) \end{cases}$ $10. \int_{-a}^{a} f(x) \, dx = \begin{cases} 2 \int_{0}^{a} f(x) \, dx, \text{ if } f(x) \text{ is even } i.e., f(-x) = f(x) \\ 0, & \text{ if } f(x) \text{ is odd } i.e., f(-x) = -f(x) \end{cases}$ 11. If $\int_{a}^{b} f(x) dx = (b-a) \int_{a}^{1} f[(b-a)x + a] dx$ 12. If f(x) is periodic function with period T, [i.e., f(x + T) = f(x)] Then, $\int_{a}^{a+T} f(x) dx$ is independent of a.

Summation of Series by Definite Integral

We know that,

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} h \sum_{r=1}^{n} f(a+rh)$$

where,

$$nh = b - a$$

Now, put a = 0, b = 1

4

...

$$nh = 1 - 0 = 1 \text{ or } h = \frac{1}{n}$$

 $\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{n-1} f\left(\frac{r}{n}\right)$

Method Express the given series in the form of

$$\lim_{n \to \infty} \sum \frac{1}{n} f\left(\frac{r}{n}\right)$$

Replace $\frac{r}{n}$ by x and $\frac{1}{n}$ by dx and the limit of the sum is $\int_0^1 f(x) dx$.

Note
$$\lim_{n \to \infty} \sum_{r=1}^{pn} \frac{1}{n} f\left(\frac{r}{n}\right) = \int_{\alpha}^{\beta} f(x) dx$$

where,
$$\alpha = \lim_{n \to \infty} \frac{r}{n} = 0$$
 (as $r = 1$)

and
$$\beta = \lim_{n \to \infty} \frac{r}{n} = p$$
 (as $r = pn$)

The method to evaluate the integral, as limit of the sum of an infinite series is known as integration by first principle.

Important Results

(i) (a)
$$\int_{0}^{\pi/2} \frac{\sin^{n} x + \cos^{n} x}{\sin^{n} x + \cos^{n} x} dx = \frac{\pi}{4} = \int_{0}^{\pi/2} \frac{\cos^{n} x}{\sin^{n} x + \cos^{n} x} dx$$

(b) $\int_{0}^{\pi/2} \frac{\tan^{n} x}{1 + \tan^{n} x} dx = \frac{\pi}{4} = \int_{0}^{\pi/2} \frac{dx}{1 + \tan^{n} x}$
(c) $\int_{0}^{\pi/2} \frac{dx}{1 + \cot^{n} x} = \frac{\pi}{4} = \int_{0}^{\pi/2} \frac{\cot^{n} x}{1 + \cot^{n} x} dx$
(d) $\int_{0}^{\pi/2} \frac{\tan^{n} x}{\tan^{n} x + \cot^{n} x} dx = \frac{\pi}{4} = \int_{0}^{\pi/2} \frac{\cot^{n} x}{\tan^{n} x + \cot^{n} x} dx$
(e) $\int_{0}^{\pi/2} \frac{\sec^{n} x}{\sec^{n} x + \csc^{n} x} dx = \frac{\pi}{4} = \int_{0}^{\pi/2} \frac{\csc^{n} x}{\sec^{n} x + \csc^{n} x} dx$ where, $n \in \mathbb{R}$
(ii) $\int_{0}^{\pi/2} \frac{a^{\sin^{n} x}}{a^{\sin^{n} x} + a^{\cos^{n} x}} dx = \int_{0}^{\pi/2} \frac{a^{\cos^{n} x}}{a^{\sin^{n} x} + a^{\cos^{n} x}} dx = \frac{\pi}{4}$
(iii) $\int_{0}^{\pi/2} \log \sin x dx = \int_{0}^{\pi/2} \log \cos x dx = -\frac{\pi}{2} \log 2$
(b) $\int_{0}^{\pi/2} \log \tan x dx = \int_{0}^{\pi/2} \log \csc x dx = \frac{\pi}{2} \log 2$
(c) $\int_{0}^{\pi/2} \log \sec x dx = \int_{0}^{\pi/2} \log \csc x dx = \frac{\pi}{2} \log 2$
(iv) (a) $\int_{0}^{\infty} e^{-ax} \sin bx dx = \frac{b}{a^{2} + b^{2}}$
(b) $\int_{0}^{\infty} e^{-ax} x^{n} dx = \frac{n!}{a^{n} + 1}$

Area of Bounded Region

The space occupied by the curve along with the axis, under the given condition is called area of bounded region.

(i) The area bounded by the curve y = F(x) above the X-axis and between the lines x = a, x = b is given by $\int_{a}^{b} y \, dx = \int_{a}^{b} F(x) \, dx$

(ii) If the curve between the lines x = a, x = b lies below the X-axis, then the required area is given by

(iii) The area bounded by the curve x = F(y) right to the Y-axis and the lines y = c, y = d is given by

(iv) If the curve between the lines y = c, y = d left to the Y-axis, then the area is given by

(v) Area bounded by two curves y = F(x) and y = G(x) between x = a and x = b is given by

(vi) Area bounded by two curves x = f(y) and x = g(y) between y=c and y=d is given $\int_{c}^{d} [F(y) - G(y)] dy$

(vii) If $F(x) \ge G(x)$ in [a, c] and $F(x) \le G(x)$ in [c,d], where a < c < b, then area of the region bounded by the curves is given as

Area =
$$\int_{a}^{c} \{F(x) - G(x)\} dx + \int_{c}^{b} \{G(x) - F(x)\} dx$$

MCQS

1. The area bounded by the circle $x^2+y^2=2$ is equal to :

(a) sq. units	(b) sq. units	(c) 4 sq. units	(d) sq. units	(d) sq. units					
2. The area of the r	egion bounde	d by the curve	$y=x^2$ and the line $y=16$ is						
(a)	(b)	(c)	(d)						
3. The area of the r	egion bounde	ed by the parabo	bla y ² =x and the straight	line 2y=x is					
(a) sq. units	(b) 1 sq. unit	(c) sq. ı	units (d) sq. unit						
4. The area of the r is:	egion bounde	ed by the curve	y=sin x between the ordi	inate and the x-axis					
(a) 2 sq. units	(b) 4 s	q. units	(c) 3 sq. units	(d) 1 sq. unit					
5. The area of the r	egion bounde	ed by the curve	and x-axis is						
(a) 8 sq. units	(b) 20	sq. units (c)) 16 sq. units	(d) 256 sq. units					
6. The area bounde equal areas by the	ed by the curv line x=k. The	e y=x² the x- a: value of k is	x is and the line $x=2^{1/3}$ is	divided into two					
(a) $2^{1/3}$ -1	(b) 1	(c) $2^{-2/3}$	(d) $2^{-1/3}$						
7. The area $\{(x,y)$:	$ \mathbf{x} \ge \mathbf{y} \ge \mathbf{x}^2$ is	equal to:							
(a)	(b)	(c)	(d) None of the	hese					
8. The area is equa	al to:								
(a)	(b)	(c)	(d) None of the	hese					
9. The area enclose	ed between th	e curves $y=x^2$ and	nd $x=y^2$ is:						
(a)	(b)	(c)	(d) None of the	hese					
10. The area enclose	sed between t	he curve $y^2 = 4x$	and the line y=x is						
(a)	(b)	(c)	(d)						
11. The area enclose	sed between t	he curve $y=x^{1/3}$, the y-axis and the lines	y=-1, y=1 is					
(a) 0	(b)	(c)	(d) None of the	hese					
12. The area of a pa	arabola y ² =4a	x bounded by it	s latus rectum is:						
(a)	(b)	(c)	(d)						

13. The area between the hyperbola $xy=c^2$, the x-axis and the ordinates at a and b with a>b is:

(a) (b) (c) (d) None of these

14. The area of the region bounded by the curve $y=2x-x^2$ and the line y=x is

(a) (b) (c) (d)

15. The area enclosed by the ellipse is

(a) (b) (c) a^2b (d) ab^2

16. if the area bounded by the curve y=f(x) the coordinate axes and the line is given by , then f(x) is equal to

(a) $xe^{x}-e^{x}$ (b) $xe^{x}+e^{x}$ (c) e^{x} (d) xe^{x}

17. The area between and st. line

(a) (b) (c) (d)

18. The area of the figure bounded by y=sin x, y=cos x in the first quadrant is

(a) (b) (c) (d) None of these

19. The area bounded by the curves $y=xe^x$, $y=xe^{-x}$ and the line x=1 is:

(a) (b) (c) (d)

20. The area bounded by the curve $y=x^3$, x-axis and two ordinates x=1 and x=2 is equal to:

(a) sq. units (b) sq. units (c) sq. units (d) sq. units

21. The area bounded by the curve $y=4x-x^2$ and the x-axis is :

(a) sq. units (b) sq. units (c) sq. units (d) sq. units

22. Area between the curve $y=4+3x-x^2$ and x-axis in square units is:

(a) (b) (c) (d) None of these

23. Area bounded by the curve y=x and x-axis between x=0 and x=2 is:

(a) (b) (c) (d) None of these

24. The area bounded by the curve $y=2x-x^2$ and the straight line y=-x is given by

(a) (b)	
---------	--

(c)

25. The area enclosed between the curve $y = \log_e(x+e)$ and the co-ordinate axes is:

(a) 2 (b) 1 (c) 4 (d) 3

ANSWERS

1	d	2	b	3	a	4	d	5	a	6	b	7	b	8	a	9	a
10	a	11	b	12	a	13	b	14	a	15	c	16	b	17	a	18	d
19	c	20	b	21	c	22	c	23	c	24	a	25	b				