Determinants

Determinant

Every square matrix A is associated with a number, called its determinant and it is denoted by $\operatorname{det}(\mathrm{A})$ or $|\mathrm{A}|$.

Only square matrices have determinants. The matrices which are not square do not have determinants

(i) First Order Determinant

If $A=[a]$, then $\operatorname{det}(A)=|A|=\mathrm{a}$
(ii) Second Order Determinant

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$|A|=a_{11} a_{22}-a_{21} a_{12}$
(iii) Third Order Determinant

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{lll}
a_{11} & a_{22} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text {, then } \\
& \begin{aligned}
|A|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
\text { or }|A|=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
+a_{13}\left(a_{21} a_{32}-a_{22} a_{41}\right)
\end{aligned}
\end{aligned}
$$

Evaluation of Determinant of Square Matrix of Order 3 by Sarrus Rule

$$
\text { If } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{32} & a_{33}
\end{array}\right] \text {. }
$$

then determinant can be formed by enlarging the matrix by adjoining the first two columns on the right and draw lines as show below parallel and perpendicular to the diagonal.

The value of the determinant, thus will be the sum of the product of element. in line parallel to the diagonal minus the sum of the product of elements in line perpendicular to the line segment. Thus,
$\Delta=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$.
Note This method doesn't work for determinants of order greater than 3.

Properties of Determinants

(i) The value of the determinant remains unchanged, if rows are changed into columns and columns are changed into rows e.g., $\left|\mathrm{A}^{\prime}\right|=|\mathrm{A}|$
(ii) If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{nxn}}, \mathrm{n}>1$ and B be the matrix obtained from A by interchanging two of its rows or columns, then
$\operatorname{det}(\mathrm{B})=-\operatorname{det}(\mathrm{A})$
(iii) If two rows (or columns) of a square matrix A are proportional, then $|A|=O$.
(iv) $|B|=k|A|$, where B is the matrix obtained from A, by multiplying one row (or column) of A by k .
(v) $|\mathrm{kA}|=\mathrm{kn}|\mathrm{A}|$, where A is a matrix of order $\mathrm{n} x \mathrm{n}$.
(vi) If each element of a row (or column) of a determinant is the sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants, e.g.,

(vii) If the same multiple of the elements of any row (or column) of a determinant are added to the corresponding elements of any other row (or column), then the value of the new determinant remains unchanged, e.g.,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11}+k a_{31} & a_{12}+k a_{12} & a_{13}+k a_{38} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

(viii) If each element of a row (or column) of a determinant is zero, then its value is zero. (ix) If any two rows (columns) of a determinant are identical, then its value is zero.
(x) If each element of row (column) of a determinant is expressed as a sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants.

Important Results on Determinants

(i) $|A B|=|A||B|$, where A and B are square matrices of the same order.
(ii) $\left|A^{n}\right|=|A|^{n}$
(iii) If A, B and C are square matrices of the same order such that ith column (or row) of A is the sum of i th columns (or rows) of B and C and all other columns (or rows) of A, B and C are identical, then $|\mathrm{A}|=|\mathrm{B}|+|\mathrm{C}|$
(iv) $\left|I_{n}\right|=1$, where I_{n} is identity matrix of order n
(v) $\left|\mathrm{O}_{\mathrm{n}}\right|=0$, where O_{n} is a zero matrix of order n
(vi) If Δ (x) be a 3rd order determinant having polynomials as its elements.
(a) If $\Delta(a)$ has 2 rows (or columns) proportional, then $(x-a)$ is a factor of $\Delta(x)$.
(b) If Δ (a) has 3 rows (or columns) proportional, then $(x-a)^{2}$ is a factor of $\Delta(x)$, ,
(vii) A square matrix A is non-singular, if $|\mathrm{A}| \neq 0$ and singular, if $|\mathrm{A}|=0$.
(viii) Determinant of a skew-symmetric matrix of odd order is zero and of even order is a nonzero perfect square.
(ix) In general, $|\mathrm{B}+\mathrm{C}| \neq|\mathrm{B}|+|\mathrm{C}|$
(x) Determinant of a diagonal matrix $=$ Product of its diagonal elements
(xi) Determinant of a triangular matrix $=$ Product of its diagonal elements
(xii) A square matrix of order n , is non-singular, if its rank $\mathrm{r}=\mathrm{n}$ i.e., if $|\mathrm{A}| \neq 0$, then rank $(\mathrm{A})=\mathrm{n}$

$$
\begin{aligned}
& \text { (xiii) If } \Delta(x)=\left|\begin{array}{ccc}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
g_{1}(x) & g_{2}(x) & g_{8}(x) \\
a & b & c
\end{array}\right| \text {, then } \\
& \text { (a) } \sum_{x=1}^{n} \Delta(x)=\left|\begin{array}{ccc}
\sum_{x=1}^{n} f_{1}(x) & \sum_{x=1}^{n} f_{2}(x) & \sum_{x=1}^{n} f_{3}(x) \\
\sum_{x=1}^{n} g_{1}(x) & \sum_{x=1}^{n} g_{2}(x) & \sum_{x=1}^{n} g_{3}(x) \\
a & b & c
\end{array}\right| \\
& \text { (b) } \prod_{x=1}^{n} \Delta(x)=\left|\begin{array}{ccc}
\prod_{x=1}^{n} f_{1}(x) & \prod_{x=1}^{n} f_{2}(x) & \prod_{x=1}^{n} f_{3}(x) \\
\prod_{x=1}^{n} g_{1}(x) & \prod_{x=1}^{n} g_{2}(x) & \prod_{x=1}^{n} g_{3}(x) \\
a & b & c
\end{array}\right|
\end{aligned}
$$

(xiv) If A is a non-singular matrix, then $\left|\mathrm{A}^{-1}\right|=1 /|\mathrm{A}|=|\mathrm{A}|^{-1}$
(xv) Determinant of a orthogonal matrix $=1$ or -1 .
(xvi) Determinant of a hermitian matrix is purely real .
(xvii) If A and B are non-zero matrices and $A B=0$, then it implies $|A|=0$ and $|B|=0$.

Minors and Cofactors

$$
\text { If } \Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{21} & a_{22} & a_{33}
\end{array}\right|
$$

then the minor M_{ij} of the element a_{ij} is the determinant obtained by deleting the i row and jth column.

$$
\begin{array}{ll}
\text { i.e., } & M_{11}=\text { minor of } a_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \\
& M_{12}=\text { minor } a_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
\text { and } & M_{13}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{array}
$$

The cofactor of the element a_{ij} is $\mathrm{C}_{\mathrm{ij}}=(-1) \mathrm{i}+\mathrm{j} \mathrm{M}_{\mathrm{ij}}$

Adjoint of a Matrix :-

Adjoint of a matrix is the transpose of the matrix of cofactors of the give matrix, i.e.,

$$
\operatorname{adj}(A)=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]^{T}=\left[\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{32} \\
c_{13} & c_{23} & c_{33}
\end{array}\right]
$$

Properties of Minors and Cofactors

(i) The sum of the products of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of any other row (or column) is zero, i.e., if

$$
\Delta=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

then $\mathrm{a}_{11} \mathrm{C}_{31}+\mathrm{a}_{12} \mathrm{C}_{32}+\mathrm{a}_{13} \mathrm{C}_{33}=0$ ans so on.
(ii) The sum of the product of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of the same row (or column) is Δ

$$
\begin{aligned}
& \text { i.e., If } A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \text {, then }|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& \text { (iii) In general, if }|A|=\Delta \text {, then }|A|=\sum_{i=1}^{n} a_{i j} C_{\psi} \\
& \text { and (adj } A)=\Delta^{n-1} \text {, where } A \text { is a matrix of order } n \times n .
\end{aligned}
$$

Differentiation of Determinant

$$
\begin{aligned}
& \text { If } \Delta(x)=\left|\begin{array}{lll}
a(x) & b(x) & c(x) \\
p(x) & q(x) & r(x) \\
u(x) & v(x) & (x)
\end{array}\right| \\
& \text { then } \frac{d \Delta}{d x}=\left|\begin{array}{lll}
a^{\prime}(x) & b^{\prime}(x) & c^{\prime}(x) \\
p(x) & q(x) & r(x) \\
u(x) & v(x) & (x)
\end{array}\right|+\left|\begin{array}{ccc}
a(x) & b(x) & c(x) \\
p^{\prime}(x) & q^{\prime}(x) & r^{\prime}(x) \\
u(x) & v(x) & (x)
\end{array}\right| \\
& +\left|\begin{array}{ccc}
a(x) & b(x) & c(x) \\
p(x) & q(x) & r(x) \\
u^{\prime}(x) & v^{\prime}(x) & \prime(x)
\end{array}\right|
\end{aligned}
$$

Integration of Determinant

If the elements of more than one column or rows are functions of x, then the integration can be done only after evaluation/expansion of the determinant.

Solution of Linear equations by Determinant/Cramer's Rule

Case 1.

The solution of the system of simultaneous linear equations
$a_{1} x+b_{1} y=C_{1} \ldots$ (i)
$a_{2} x+b_{2} y=C_{2} \ldots$ (ii)
is given by $x=D_{1} / D, Y=D_{2} / D$

$$
\text { where, } D=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|, D_{1}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right| \text { and } D_{2}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \text { provided that } D \neq 0
$$

(i) If $\mathrm{D} \neq 0$, then the given system of equations is consistent and has a unique solution given by $x=D_{1} / D, y=D_{2} / D$
(ii) If $\mathrm{D}=0$ and $\mathrm{Dl}=\mathrm{D} 2=0$, then the system is consistent and has infinitely many solutions.
(iii) If $\mathrm{D}=0$ and one of Dl and D 2 is non-zero, then the system is inconsistent.

Case II.

Let the system of equations be
$\mathrm{a} 1 \mathrm{x}+\mathrm{b} 1 \mathrm{y}+\mathrm{C} 1 \mathrm{z}=\mathrm{d} 1$
$\mathrm{a} 2 \mathrm{x}+\mathrm{b} 2 \mathrm{y}+\mathrm{C} 2 \mathrm{z}=\mathrm{d} 2$
$a 3 x+b 3 y+C 3 z=d 3$
Then, the solution of the system of equation is $\mathrm{x}=\mathrm{D} 1 / \mathrm{D}, \mathrm{Y}=\mathrm{D} 2 / \mathrm{D}, \mathrm{Z}=\mathrm{D} 3 / \mathrm{D}$, it is called Cramer's rule.

$$
\text { where, } \begin{aligned}
D & =\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|, D_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \\
D_{2} & =\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right|, D_{3}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
\end{aligned}
$$

(i) If $\mathrm{D} \neq 0$, then the system of equations is consistent with unique solution.
(ii) If $\mathrm{D}=0$ and atleast one of the determinant $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ is non-zero, then the given
system is inconsistent, i.e., having no solution.
(iii) If $\mathrm{D}=0$ and $\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$, then the system is consistent, with infinitely many solutions.
(iv) If $\mathrm{D} \neq 0$ and $\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$, then system has only trivial solution, $(\mathrm{x}=\mathrm{y}=\mathrm{z}=0)$.

Cayley-Hamilton Theorem

Every matrix satisfies its characteristic equation, i.e., if A be a square matrix, then $|\mathrm{A}-\mathrm{x}|$ $=0$ is the characteristics equation of A. The values of x are called eigenvalues of A.
i.e., if $x_{3}-4 x_{2}-5 x-7=0$ is characteristic equation for A, then $A_{3}-4 A_{2}+5 A-7 I=0$

Properties of Characteristic Equation

(i) The sum of the eigenvalues of A is equal to its trace.
(ii) The product of the eigenvalues of A is equal to its determinant.
(iii) The eigenvalues of an orthogonal matrix are of unit modulus.
(iv) Thefeigen values of a unitary matrix are of unit modulus.
(v) A and A' have same eigenvalues.
(vi) The eigenvalues of a skew-hermitian matrix are either purely imaginary or zero.
(vii) If x is an eigenvalue of A, then x is the eigenvalue of A^{*}.
(viii) The eigenvalues of a triangular matrix are its diagonal elements.
(ix) If x is the eigenvalue of A and $|A| \neq 0$, then $(1 / x)$ is the eigenvalue of A^{-1}.
(x) If x is the eigenvalue of A and $|A| \neq 0$, then $|A| / x$ is the eigenvalue of adj (A).
(xi) If $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$ are eigenvalues of A , then the eigenvalues of A^{2} are $\mathrm{x}_{2}{ }^{2}, \mathrm{x}_{2}{ }^{2}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{2}$.

Cyclic Determinants

$$
\begin{aligned}
& \text { (i) }\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a) \\
& \text { (1i) } \left.\begin{array}{ll}
1 & 1 \\
a & b \\
a^{3} & b^{3}
\end{array} \right\rvert\,=(a-b)(b-c)(c-a)(a+b+c)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) }\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{4} & b^{4} & c^{4}
\end{array}\right|=(a-b)(b-c)(c-a)\left\{\left(a^{2}+b^{2}+c^{2}\right)+(a b+b c+c a)\right\} \\
& \text { (iv) }\left|\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} & b^{2} & c^{2} \\
a^{3} & b^{3} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)(a b+b c+c a) \\
& \text { (v) }\left|\begin{array}{ccc}
x^{2} & (x+a)^{2} & (x-a)^{2} \\
y^{2} & (y+a)^{2} & (y-a)^{2} \\
z^{2} & (z+a)^{2} & (z-a)^{2}
\end{array}\right|=-4 a^{3}(x-y)(y-z)(z-x) \\
& \text { (vi) }\left|\begin{array}{lll}
1 & 1 & 1 \\
a & b & c \\
b & a & c
\end{array}\right|=a^{2}+b^{2}+c^{2}-a b-b c-c a \\
& =\frac{1}{2}\left[(b-c)^{2}+(c-a)^{2}+(a-b)^{2}\right] \\
& \text { (vii) }\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
& =-\left(a^{3}+b^{3}+c^{3}-3 a b c\right) \\
& \text { (viii) }\left|\begin{array}{cccc}
x+a & b & c & d \\
a & x+b & c & d \\
a & b & x+c & d \\
a & b & c & x+d
\end{array}\right|=x^{3}(x+a+b+c+d)
\end{aligned}
$$

Applications of Determinant in Geometry

Let three points in a plane be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, then

$$
\text { (i) Area of } \triangle A B C=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

$=1 / 2\left[x_{1}\left(y_{2}-y 3\right)+x_{2}\left(y 3-y_{1}\right)+x 3\left(y_{1}-y_{2}\right)\right]$
(ii) If three poincs are collinear, then $\left|\begin{array}{lll}x_{1} & y_{3} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{8} & 1\end{array}\right|=0$
(iii) Equation of a line passing through the points A and B is

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

Maximum and Minimum Value of Determinants

$$
\text { If } \quad|A|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{4} \\
a_{7} & a_{\mathrm{n}} & a_{\mathrm{p}}
\end{array}\right| \text {, }
$$

where $\mathrm{a}_{\mathrm{i}} \mathrm{s} \in\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}}\right]$
Then, $|\mathrm{A}|_{\text {max }}$ when diagonal elements are
$\left\{\min \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\}$
and non-diagonal elements are
$\left\{\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\}$
Also, $|\mathrm{A}|_{\text {min }}=-|\mathrm{A}|_{\text {max }}$

MCQS

1. The determinant $\left|\begin{array}{lll}b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{array}\right|$ equals:
(i) $a b c(b-c)(c-a)(a-b)$
(ii) $(b-c)(c-a)(a-b)$
(iii) $(a+b+c)(b-c)(c-a)(a-b)$
(iv) None of these
2. Let $\Delta=\left|\begin{array}{lll}A x & x^{2} & 1 \\ B y & y^{2} & 1 \\ C z & z^{2} & 1\end{array}\right|$ and $\Delta_{1}=\left|\begin{array}{ccc}A & B & C \\ x & y & z \\ z y & z x & x y\end{array}\right|$ then
(a) $\Delta_{1}=-\Delta$
(b) $\Delta \neq \Delta_{1}$
(c) $\Delta-\Delta_{1}=0$
(d) None of these
3.if $x, y \in R$ then the determinant: $\quad \Delta=\left|\begin{array}{ccc}\cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ \cos (x+y) & -\sin (x+y) & 0\end{array}\right|$ lies in the interval:
(a) $[-\sqrt{2}, \sqrt{2}]$
(b) $[-1,1]$
(c) $[-\sqrt{2}, 1]$
(d) $[-1,-\sqrt{2}]$
3. The number of distinct real roots of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval is $\frac{-\pi}{4} \leq x \leq \frac{\pi}{4}$ is
(a) 0
(b) 2
(c) 1
(d) 3
4. if A, B and C are angles of a triangle, then the determinant $\left|\begin{array}{ccc}-1 & \cos C & \operatorname{Cos} B \\ \operatorname{Cos} C & -1 & \operatorname{Cos} A \\ \operatorname{Cos} B & \operatorname{Cos} A & -1\end{array}\right|$ is equals to:
(a) 0
(b) -1
(c) 1
(d) None of these
6.if x, y, z are all different from zero and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0$ then $x^{-1}+y^{-1}+$ z^{-1} is
(a) $x y z$
(b) $x^{-1} y^{-1} z^{-1}$
(c) $-x-y-z$
(d) -1
5. The value of dterminant $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$ is
(a) $9 x^{2}(x+y)$
(b) $9 y^{2}(x+y)$
(c) $3 y^{2}(x+y)$
(d) $7 x^{2}(x+y)$
6. There are two values of a which makes determinant , $A=\left|\begin{array}{ccc}1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a\end{array}\right|=86$ then sum of these numbers is
(a) 4
(b) 5
(c) -4
(d) 9
9.if $f(x)=\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|$ then:
(a) $f(a)=0$
(b) $f(b)=0$
(c) $f(0)=0$
(d) $f(1)=0$
10.The maximum value of $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1+\cos \theta & 1 & 1\end{array}\right|$ is (θ is real number)
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{2}$
(d) $\frac{2 \sqrt{3}}{4}$
11.Let $\mathrm{f}(\mathrm{t})=\left|\begin{array}{ccc}\cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t\end{array}\right|$ then $\lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}$ is equal to:
(a) 0
(b) -1
(c) 2
(d) 3
7. The area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. The value of K will be
(a) 9
(b) 3
(c) -9
(d) 6
8. T_{p}, T_{q}, T_{r} arepth, qth and rth terms of an A.P then $\left|\begin{array}{ccc}T_{p} & T_{q} & T_{r} \\ p & q & r \\ 1 & 1 & 1\end{array}\right|$ equals
(a) 1
(b) -1
(c) 0
(d) $p+q+r$
9. The value of $\left|\begin{array}{llll}p & 0 & 0 & 0 \\ a & q & 0 & 0 \\ b & c & r & 0 \\ d & e & f & s\end{array}\right|$ is
(a) $P+q+r+s$
(b) 1
(c) $a b+c d+e f$
(d) pqrs
10. The value of $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$, ω being a cube root of unity is
(a) 0
(b) 1
(c) ω^{2}
(d) ω
11. The roots of the equation: $\left|\begin{array}{ccc}a-x & b & c \\ 0 & b-x & 0 \\ 0 & b & c-x\end{array}\right|=0$ are
(a) a and b
(b) b and c
(c) a and c
(d) a, b and c
12. if $\left|\begin{array}{ccc}1-x & 2 & 3 \\ 0 & x & 0 \\ 0 & 0 & x\end{array}\right|=0$ then its roots are
(a) 1 only
(b) 0,1
(c) 0 only
(d) $0,-1,0$
18.f $a \neq b \neq c$, one value of x which satisfies the equation $\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$ is given by
(a) $x=a$
(b) $x=b$
(c) $x=c$
(d) $x=0$
19.if $a \mu^{3}+b \mu^{3}+c \mu+d=\left|\begin{array}{ccc}3 \mu & \mu+1 & \mu-1 \\ \mu-3 & -2 \mu & \mu+2 \\ \mu+3 & \mu-4 & 5 \mu\end{array}\right|$ be an identity in μ. Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants, then the value of d is
(a) 5
(b) -6
(c) 9
(d) 0
13. The determinant : $\left|\begin{array}{ccc}x p+y & x & y \\ y p+z & y & z \\ 0 & x p+y & y p+z\end{array}\right|=0$ if
(a) x, y, z are in A.P
(b) x, y, z are in G.P
(c) x, y, z are in H.P
(d) $x y, y z, z x$ are in A.P
14. The value of the determinant : $\left|\begin{array}{ccc}a+p d & a+q d & a+r d \\ p & q & r \\ d & d & d\end{array}\right|$ is equal to
(a) 0
(b) -1
(c) 1
(d) $p+q+r$
22.if $f(x)=:\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|$ then $\mathrm{f}(100)$ is equal to
(a) 0
(b) 1
(c) 100
(d) -100
15. The value of λ for which the system of equations: $x+y+z=6, x+2 y+3 z=10, x+4 y+\lambda z=$ 12 has a unique solution is
(a) $\lambda \neq-7$
(b) $\lambda \neq 7$
(c) $\lambda=7$
(d) $\lambda=-7$
16. if a, b, c are non zero real numbers and if the equations:
$(a-1) x=y+z,(b-1) y=z+x,(c-1) z=x+y$ has a non trivial solution then $a b+b c+c a$ equals
(a) $a+b+c$
(b) abc
(c) 1
(d) None of these

ANSWERS

1	\mathbf{d}	2	\mathbf{c}	3	\mathbf{a}	4	\mathbf{c}	5	\mathbf{a}	6	\mathbf{d}	7	\mathbf{b}	8	\mathbf{c}	9	\mathbf{c}
10	\mathbf{a}	11	\mathbf{a}	12	\mathbf{b}	13	\mathbf{c}	14	\mathbf{d}	15	\mathbf{a}	16	\mathbf{d}	17	\mathbf{b}	18	\mathbf{d}
19	\mathbf{b}	20	\mathbf{b}	21	\mathbf{a}	22	\mathbf{a}	23	\mathbf{c}	24	\mathbf{b}						

