Relations and Functions

Definitions:

Let A and B be two non-empty sets, then a function f from set A to set B is a rule which associates each element of A to a unique element of B.

• Relation

If (a, b) \in R, we say that a is related to b under the relation R and we write as a R b

• Function

It is represented as f: $A \rightarrow B$ and function is also called mapping.

• Real Function

f: A \rightarrow B is called a real function, if A and B are subsets of R.

Domain and Codomain of a Real Function

Domain and codomain of a function f is a set of all real numbers x for which f(x) is a real number. Here, set A is domain and set B is codomain.

• Range of a real function

f is a set of values f(x) which it attains on the points of its domain

Types of Relations

 A relation R in a set A is called **Empty relation**, if no element of A is related to any element of

A, i.e., $R = \phi \subset A \times A$.

- A relation R in a set A is called **Universal relation**, if each element of A is related to every element of A, i.e., R = A × A.
- Both the empty relation and the universal relation are sometimes called **Trivial Relations**
- A relation R in a set A is called
 - Reflexive
 - if $(a, a) \in \mathbb{R}$, for every $a \in \mathbb{A}$,
 - Symmetric
 - If $(a_1, a_2) \in \mathbb{R}$ implies that $(a_2, a_1) \in \mathbb{R}$, for all $a_1, a_2 \in \mathbb{A}$.
 - Transitive
 - If (a₁, a₂) ∈ R and (a₂, a₃) ∈ R implies that (a₁, a₃) ∈ R, for all a₁, a₂, a₃ ∈ A.
- A relation R in a set A is said to be an **equivalence relation** if R is reflexive,

symmetric and transitive

- The set E of all even integers and the set O of all odd integers are subsets of Z satisfying following conditions:
 - All elements of E are related to each other and all elements of O are related to each other.
 - No element of E is related to any element of O and vice-versa.
 - E and O are disjoint and $Z = E \cup O$.
 - The subset E is called the equivalence class containing zero, Denoted by [0].
 - O is the equivalence class containing 1 and is denoted by [1].

Note

- [0] ≠ [1]
- [0] = [2R]
- $[1] = [2R + 1], r \in \mathbb{Z}.$
- Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into mutually disjoint subsets Ai called partitions or subdivisions of X satisfying:
 - All elements of Ai are related to each other, for all i.
 - No element of Ai is related to any element of Aj, i ≠ j.
 - $\bigcup Aj = X \text{ and } Ai \cap Aj = \phi, i \neq j.$
- $_{\odot}~$ The subsets Ai are called equivalence classes.

Note:

- \circ $\;$ Two ways of representing a relation
 - Roaster method
 - Set builder method
- If $(a, b) \in \mathbb{R}$, we say that a is related to b and we denote it as *a R b*.

Classification of Real Functions

Real functions are generally classified under two categories algebraic functions and transcendental functions.

1. Algebraic Functions

Some algebraic functions are given below (i) **Polynomial Functions** If a function y = f(x) is given by

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$
$$= \sum_{i=0}^n a_i x^{n-i}$$

where, a_0 , a_1 , a_2 ,..., a_n are real numbers and n is any non -negative integer, then f (x) is called a polynomial function in x.

If $a_0 \neq 0$, then the degree of the polynomial f(x) is n. The domain of a polynomial function is the set of real number R.

e.g.,
$$y = f(x) = 3x^5 - 4x^2 - 2x + 1$$

is a polynomial of degree 5.

(ii) Rational Functions If a function y = f(x) is given by $f(x) = \varphi(x) / \Psi(x)$

where, $\varphi(x)$ and $\Psi(x)$ are polynomial functions, then f(x) is called rational function in x.

(iii) Irrational Functions The algebraic functions containing one or more terms having nonintegral rational power x are called irrational functions. e.g., $y = f(x) = 2\sqrt{x} - \sqrt[3]{x} + 6$

2. Transcendental Function

A. function, which is not algebraic, is called a transcendental function. Trigonometric, Inverse trigonometric, Exponential, Logarithmic, etc are transcendental functions.

Explicit and Implicit Functions

(i) Explicit Functions A function is said to be an explicit function, if it is expressed in the form y = f(x).

(ii) Implicit Functions A function is said to be an implicit function, if it is expressed in the form f(x, y) = C, where C is constant. e.g., sin (x + y) - cos (x + y) = 2

Intervals of a Function

(i) The set of real numbers x, such that $a \le x \le b$ is called a closed interval and denoted by [a, b] i.e., $\{x: x \in R, a \le x \le b\}$.

(ii) Set of real number x, such that a < x < b is called open interval and is denoted by (a, b) i.e., $\{x: x \in R, a < x < b\}$

(iii) Intervals $[a,b) = \{x: x \in R, a \le x \le b\}$ and $(a, b] = \{x: x \ne R, a \le x \le b\}$ are called semiopen and semi-closed intervals.

Graph of Real Functions

1. Constant Function Let c be a fixed real number.

The function that associates to each real number x, this fixed number c is called a constant function i.e., y = f(x) = c for all $x \in R$.

Domain of f(x) = RRange of $f(x) = \{c\}$

2. Identity Function

The function that associates to each real number x for the same number x, is called the identity function. i.e., y = f(x) = x, $\forall x \in$

R. Domain of f(x) = RRange f(x) = R

3. Linear Function

If a and b be fixed real numbers, then the linear function is defined as y = f(x) = ax + b, where a and b are constants.

Domain of f(x) = RRange of f(x) = R

The graph of a linear function is given in the following diagram, which is a straight line with slope a.

4. Quadratic Function

If a, b and c are fixed real numbers, then the quadratic function is expressed as $y = f(x) = ax^2 + bx + c$, $a \neq 0 \Rightarrow y = a (x + b / 2a)^2 + 4ac - b^2 / 4a$

which is equation of a parabola in downward, if a < 0 and upward, if a > 0 and vertex at $(-b / 2a, 4ac - b^2 / 4a)$.

Domain of f(x) = R

Range of f(x) is $[-\infty, 4ac - b^2 / 4a]$, if a < 0 and $[4ac - b^2 / 4a, \infty]$, if a > 0 5. Square Root Function Square root function is defined by $y = F(x) = \sqrt{x}, x \ge 0$.

5. Square Root Function

Square root function is defined by $y = F(x) = \sqrt{x}, x \ge 0$.

Domain of $f(x) = [0, \infty)$ Range of $f(x) = [0, \infty)$

6. Exponential Function

Exponential function is given by $y = f(x) = a^x$, where a > 0, $a \neq 1$.

7. Logarithmic Function

A logarithmic function may be given by $y = f(x) = \log a x$, where a > 0, $a \neq 1$ and x > 0.

The graph of the function is as shown below. which is increasing, if a > 1 and decreasing, if 0 < a < 1.

Domain of $f(x) = (0, \infty)$ Range of f(x) = R

8. Power Function

The power function is given by $y = f(x) = x^n$, $n \in I$, $n \neq 1$, 0. The domain and range of the graph y = f(x), is depend on n.

(a) If n is positive even integer.

i.e., $f(x) = x^2, x^4, \dots$

Domain of f(x) = RRange of $f(x) = [0, \infty)$

(b) If n is positive odd integer.

i.e., $f(x) = x^3, x^5, \dots$

Domain of f(x) = RRange of f(x) = R

(c) If n is negative even integer.

i.e., $f(x) = x^{-2}, x^{-4}, \dots$

Domain of $f(x) = R - \{0\}$ Range of $f(x) = (0, \infty)$

(d) If n is negative odd integer.

i.e.,
$$f(x) = x^{-1}, x^{-3}, \dots$$

Domain of $f(x) = R - \{0\}$ Range of $f(x) = R - \{0\}$

9. Modulus Function (Absolute Value Function)

Modulus function is given by y = f(x) = |x|, where |x| denotes the absolute value of x, that is

 $|\mathbf{x}| = \{\mathbf{x}, \text{ if } \mathbf{x} \ge 0, -\mathbf{x}, \text{ if } \mathbf{x} < 0\}$

Domain of f(x) = RRange of f(x) = [0, &infi;)

> 10. **Signum Function** Signum function is defined as follows $y = f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ or } \begin{cases} \frac{x}{|x|}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \xrightarrow{y = -1} \xrightarrow{y$

Domain of f(x) = RRange of $f(x) = \{-1, 0, 1\}$

11. Greatest Integer Function

The greatest integer function is defined as y = f(x) = [x]

where, [x] represents the greatest integer less than or equal to x. i.e., for any integer n, [x] = n, if $n \le x < n + 1$ Domain of f(x) = R Range of f(x) = I

Properties of Greatest Integer Function

(i) $[x + n] = n + [x], n \in I$ (ii) $x = [x] + \{x\}, \{x\}$ denotes the fractional part of x. (iii) $[-x] = -[x], -x \in I$ (iv) $[-x] = -[x] - 1, x \in I$ (v) $[x] \ge n \Rightarrow x \ge n, n \in I$ (vi) $[x] \ge n \Rightarrow x \Rightarrow n+1, n \in I$ (vii) $[x] \le n \Rightarrow x < n + 1, n \in I$ (viii) $[x] < n \Rightarrow x < n + 1, n \in I$ (viii) $[x] < n \Rightarrow x < n, n \in I$ (ix) [x + y] = [x] + [y + x - [x]] for all x, $y \in R$ (x) $[x + y] \ge [x] + [y]$ (xi) $[x] + [x + 1 / n] + [x + 2 / n] + ... + [x + n - 1 / n] = [nx], n \in N$

12. Least Integer Function

The least integer function which is greater than or equal to x and it is denoted by (x). Thus, (3.578) = 4, (0.87) = 1, (4) = 4, (-8.239) = -8, (-0.7) = 0

In general, if n is an integer and x is any real number between n and (n + 1). i.e., $n < x \le n + 1$, then (x) = n + 1

 $\therefore f(x) = (x)$

Domain of f = RRange of f = [x] + 1

13. Fractional Part Function

It is denoted as $f(x) = \{x\}$ and defined as

(i) $\{x\} = f$, if x = n + f, where $n \in I$ and $0 \le f < 1$ (ii) $\{x\} = x - [x]$

i.e., $\{O.7\} = 0.7, \{3\} = 0, \{-3.6\} = 0.4$ (iii) $\{x\} = x, \text{ if } 0 \le x \le 1$ (iv) $\{x\} = 0, \text{ if } x \in I$ (v) $\{-x\} = 1 - \{x\}, \text{ if } x \ne I$

Graph of Trigonometric Functions

1. Graph of sin x

(i) Domain = R (ii) Range = [-1,1](iii) Period = 2π

2. Graph of cos x

(i) Domain = R (ii) Range = [-1,1](iii) Period = 2π

3.Graph of tan x

(i) Domain = $R \sim (2n + 1) \pi / 2$, $n \in I$ (ii) Range = [- &infi;, &infi;] (iii) Period = π

4. Graph of cot x

(i) Domain = $R \sim n\pi$, $n \in I$ (ii) Range = [- &infi;, &infi;] (iii) Period = π

5. Graph of sec x

(i) Domain = $R \sim (2n + 1) \pi / 2$, $n \in I$ (ii) Range = [- &infi;, 1] \cup [1, &infi;) (iii) Period = 2π

6. Graph of cosec x

(i) Domain = $R \sim n\pi$, $n \in I$ (ii) Range = [- &infi;, -1] \cup [1, &infi;) (iii) Period = 2π

Operations on Real Functions

Let f: $x \to R$ and g : $X \to R$ be two real functions, then

(i) Sum The sum of the functions f and g is defined as $f + g : X \to R$ such that (f + g)(x) = f(x) + g(x).

(ii) Product The product of the functions f and g is defined as $fg : X \to R$, such that (fg)(x) = f(x) g(x) Clearly, f + g and fg are defined only, if f and g have the same domain. In case, the domain of f and g are different. Then, Domain of f + g or fg = Domain of $f \cap$ Domain of g. (iii) Multiplication by a Number Let $f : X \to R$ be a function and let e be a real number. Then, we define cf: $X \to R$, such that (cf) (x) = cf (x), $\forall x \in X$. (iv) Composition (Expection of Expection) Let $f : A \to R$ and $g : R \to C$ be two functions. We

(iv)Composition (Function of Function) Let $f : A \to B$ and $g : B \to C$ be two functions. We define gof : $A \to C$, such that got (c) = g(f(x)), $\forall x \in A$

Alternate There exists $Y \in B$, such that if f(x) = y and g(y) = z, then got (x) = z

Periodic Functions

A function f(x) is said to be a periodic function of x, provided there exists a real number T > 0, such that F(T + x) = f(x), $\forall x \in R$

The smallest positive real number T, satisfying the above condition is known as the period or the fundamental period of f(x)..

Testing the Periodicity of a Function

(i) Put f(T + x) = f(x) and solve this equation to find the positive values of T independent of x. (ii) If no positive value of T independent of x is obtained, then f(x) is a non-periodic function. (iii) If positive val~esofT independent of x are obtained, then f(x) is a periodic function and the least positive value of T is the period of the function f(x).

Important Points to be Remembered

(i) Constant function is periodic with no fundamental period.

(ii) If f(x) is periodic with period T, then 1 / f(x) and $\sqrt[n]{f(x)}$ are also periodic with f(x) same period T.

{iii} If f(x) is periodic with period T_1 and g(x) is periodic with period T_2 , then f(x) + g(x) is periodic with period equal to LCM of T_1 and T_2 , provided there is no positive k, such that f(k + x) = g(x) and g(k + x) = f(x).

(iv) If f(x) is periodic with period T, then kf (ax + b) is periodic with period T / |a|' where a, b , k \in R and a, k \neq 0.

(v) sin x, cos x, sec x and cosec x are periodic functions with period 2π .

(vi) tan x and cot x are periodic functions with period π .

(vii) $|\sin x|$, $|\cos x|$, $|\tan x|$, $|\cot x|$, $|\sec x|$ and $|\csc x|$ are periodic functions with period π . (viii) $\sin^n x$, $\cos^n x$, $\sec^n x$ and $\csc^n x$ are periodic functions with period 2π when n is odd, or π when n is even.

(ix) $\tan^n x$ and $\cot^n x$ are periodic functions with period π .

(x) $|\sin x| + |\cos x|$, $|\tan x| + |\cot x|$ and $|\sec x| + |\csc x|$ are periodic with period $\pi / 2$.

Even and Odd Functions

Even Functions A real function f(x) is an even function, if f(-x) = f(x). **Odd Functions** A real function f(x) is an odd function, if f(-x) = -f(x).

Properties of Even and Odd Functions

(i) Even function \pm Even function = Even function.

(ii) Odd function \pm Odd function = Odd function.

(iii) Even function * Odd function = Odd function.

(iv) Even function * Even function = Even function.

(v) Odd function * Odd function = Even function.

(vi) gof or fog is even, if anyone of f and g or both are even.

(vii) gof or fog is odd, if both of f and g are odd.

(viii) If f(x) is an even function, then d / dx f(x) or $\int f(x) dx$ is odd and if dx ...f(x) is an odd function, then d / dx f(x) or $\int f(x) dx$ is even.

(ix) The graph of an even function is symmetrical about Y-axis.

(x) The graph of an odd function is symmetrical about origin or symmetrical in opposite quadrants.

(xi) An even function can never be one-one, however an odd function mayor may not be oneone.

Different Types of Functions (Mappings)

1. One-One and Many-One Function

The mapping f: $A \rightarrow B$ is a called one-one function, if different elements in A have different images in B. Such a mapping is known as injective function or an injection.

Methods to Test One-One

(i) Analytically If $x_1, x_2 \in A$, then $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ or equivalently $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

(ii) **Graphically** If any .line parallel to x-axis cuts the graph of the function atmost at one point, then the function is one-one.

(iii) Monotonically Any function, which is entirely increasing or decreasing in whole domain, then f(x) is one-one.

Number of One-One Functions Let $f : A \rightarrow B$ be a function, such that A and B are finite sets having m and n elements respectively, (where, n > m).

The number of one-one functions $n(n-1)(n-2) \dots (n-m+1) = \{ {}^{n}P_{m}, n \ge m, 0, n < m$ The function $f : A \to B$ is called many – one function, if two or more than two different elements in A have the same image in B.

2. Onto (Surjective) and Into Function

If the function f: $A \rightarrow B$ is such that each element in B (codomain) is the image of atleast one element of A, then we say that f is a function of A 'onto' B.

Thus, f: A \rightarrow B, such that f(A) = i.e., Range = Codomain Note Every polynomial function f: R \rightarrow R of degree odd is onto.

Number of Onto (surjective) **Functions** Let A and B are finite sets having m and n elements respectively, such that $1 \le n \le m$, then number of onto (surjective) functions from A to B is ${}^{n}\Sigma_{r} = 1 (-1)^{n-r} {}^{n}C_{r}r^{m} = \text{Coefficient of}^{n}$ in n! $(e^{x} - 1)^{r}$ If f : A \rightarrow B is such that there exists atleast one element in codomain which is not the image of

Thus, $f : A \rightarrow B$, such that $f(A) \subset B$

i.e., Range \subset Codomain

Important Points to be Remembered

(i) If f and g are injective, then fog and gof are injective.
(ii) If f and g are surjective, then fog is surjective.

(iii) Iff and g are bijective, then fog is bijective.

Composition of Functions and Invertible

Function Composite Function

- Let $f: A \to B$ and $g: B \to C$ be two functions.
- Then the composition of f and g, denoted by *g* ∘ *f*, is defined as the function *g* ∘ *f*: A → C given by

 $g \circ f(x) = g(f(x)), \forall x \in A.$

• It can be verified in general that gof is one-one implies that f is one-one. Similarly, gof is onto implies that g is onto.

- While composing f and g, to get gof, first f and then g was applied, while in the reverse process of the composite gof, first the reverse process of g is applied and then the reverse process off.
- If f: X → Y is a function such that there exists a function g: Y → X such that gof = IX and fog = IY, then f must be one-one and onto.

Invertible Function

- A function f: $X \to Y$ is defined to be invertible, if there exists a function g: $Y \to X$ such that gof = IX and fog = IY. The function g is called the inverse of f
- Denoted by f⁻¹.

• Thus, if f is invertible, then f must be one-one and onto and conversely, if f is one-one and onto, then f must be invertible.

Theorem 1

- If $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are functions, then \circ ho (g o f) = (h o g) o f.
- Proof

We

- have
 - h o (g o f) (x) = h(g o f (x)) = h(g(f(x))), ∀ x in X
 - $(h \circ g) \circ f(x) = h \circ g(f(x)) = h(g(f(x))), \forall x \text{ in } X.$

Hence, $h \circ (g \circ f) = (h \circ g) \circ f$

Theorem 2

- Let $f: X \to Y$ and $g: Y \to Z$ be two invertible functions.
- Then gof is also invertible with (go f)⁻¹ = f⁻¹ o

g**-**1

• Proof

To show that gof is invertible with (g o f)⁻¹ = f⁻¹ o g⁻¹, it is enough to show that (f⁻¹ o g⁻¹) o (g o f) = IX and (g o f) o (f⁻¹ o g⁻¹) = IZ.

Now, $(f^{-1} \circ g^{-1}) \circ (g \circ f) = ((f^{-1} \circ g^{-1}) \circ g) \circ f$, by Theorem 1

= (f⁻¹ o (g⁻¹ o g)) of, by Theorem 1

= (f⁻¹ o IY) of, by definition of g^{-1}

= IX

Similarly, it can be shown that $(g \circ f) \circ (f^{-1} \circ g^{-1}) = IZ$

Binary Operations

Definitions:

- A binary operation * on a set A is a function * : A × A → A. We denote * (a, b) by a * b.
- A binary operation * on the set X is called commutative, if a * b = b * a, for every a, b ∈ X
- A binary operation * : A × A → A is said to be associative if (a * b) * c = a * (b * c), ∀ a, b, c, ∈ A.
- A binary operation * : A × A → A, an element e ∈ A, if it exists, is called identity for the operation *, if a * e = a = e * a, ∀ a ∈ A.
 - Zero is identity for the addition operation on R but it is not identity for the addition operation on N, as 0 ∉ N.
 - Addition operation on N does not have any identity.
 - For the addition operation + : R × R → R, given any a ∈ R, there exists a in R such that a + (– a) = 0 (identity for '+') = (– a) + a.
 - For the multiplication operation on R, given any $a \neq 0$ in R, we can choose ¹ such that a a

$$X_a^1 = 1$$
 (identity for '×') $= \frac{1}{a} = {}^1 X a$

A binary operation * : A × A → A with the identity element e in A, an element a ∈ A is said to be invertible with respect to the operation *, if there exists an element b in A such that a * b = e = b * a and b is called the inverse of a and is denoted by a⁻¹

MCQ

1. Let n(A) =m and n(B)=n. Then the total number of non empty relations that can be defined from A to B is:

(a) m^n (b) n^m -1 (c) mn-1 (d) 2^{mn} -1

2. Let A={ 1, 2, 3}. The total number of distinct relation which can be defined over A is:

(a) 6	(b) 8	(c) 2 ⁹	(d) None of th	ıese							
3. Let A={1, 2, 3, 4} and R={ (2,2), (3,3) ,(4,4), (1,2)} be relation on A. Then A is:											
(a)reflexive	(b) symmetric	(c) trans	itive (d) Nor	ne of these							
4. The void relation on a Set A is:											
(a) reflexive	(b) symmet	tric and transitiv	and transitive								
(c) reflexive and symmetric (d) reflexive and transitive											
5. The relation 'is subset of' on the power set P(A) of a set A is:											
(a) symmetric (b) anti-symmetric											
(c) equivalence relation (d) None of these											
6. The relation 'congruence modulo m' is :											
(a) reflexive only	(b) symmet	tric only	only								
(c) transitive only (d) an equivalence relation.											
7. Let R be the relation over the set N×N and is defined by (a,b) R (c,d) \Rightarrow a+d=b+c. Then R is:											
(a) reflexive only	(a) reflexive only (b) symmetric only										
(c) transitive only	(c) transitive only (d) an equivalence relation.										
8. Let $P=\{(x,y): x^2+y^2=1, x, y \in R\}$. Then P is:											
(a) reflexive	(b) symmetric	(c) trans	itive (d) anti	-symmetric							
9. Let R be a relation on a Set A such that $R=R^{-1}$. Then R is											
(a) reflexive	(b) symmetric	(c) trans	itive (d) Nor	ne of these.							
10. Let a relation R in the set of natural numbers be defined by $(x,y)\epsilon R \Leftrightarrow x^2-4xy+3y^2=0$ for all $x,y\epsilon N$. Then the											
relation R is :											
(a) reflexive relation.	(b) symmetric	(c) trans	itive (d) an e	equivalence							

11. Let $A = \{1, 2, 3\}$. Then the relation $R = \{(2,3) \text{ in } A \text{ is:} \}$

(a) symmetric only (b) transitive only (c) Symmetric and transitive only (d) None of these

12. Two points A and B in a Place are related if OA=OB. Where O is a fixed point. This relation is:

(a) reflexive but not symmetric (b) reflexive but not transitive

(c) equivalence relation (d) partial order relation

13. The relation R defined in A={1, 2, 3} by a R b if $|a^2-b^2| \le 5$. Which of the following is not true?

(a) Domain of R={1, 2, 3}

(b) Range of R={5}

(c) $R=R^{-1}$

(d) R={(1,1), (2,2), (3,3), (2,1), (1,2), (2,3), (3,2)}

14. Let R be a relation in the set of natural numbers defined by $R=\{(1+x,1+x^2):x \le 5, x \in N\}$. Which of the following

is false

(a)Domain of R={2, 3, 4, 5, 6}
(b) Range of R={ 2, 5, 10, 17, 26}
(c) R={ (2,2), (3,5), (4,10), (5,17), (6,26)}

(d) At least one is false.

15. The domain of the function f is defined by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ is given by:

(a) R-{3,-2} (b) R-{-3,2} (c) R-[3, -2] (d) R-(3,-2)

16. The domain and range of the function f given by f(x)=2-|x-5| is:

(a) Domain=
$$R^+$$
, Range= $(-\infty, 1]$

(b) Domain=R, Range= $(-\infty, 2]$

(c) Domain =R , Range= $(-\infty, 2)$

(d) Domain=
$$R^+$$
, Range= $(-\infty, 2]$

17. The domain for which the function defined by: $f(x)=3x^2-1$ and g(x)=3+x is equal to:

(a) $\left\{-1, \frac{4}{3}\right\}$ (b) $\left\{-1, -\frac{4}{3}\right\}$ (c) $\left\{1, \frac{4}{3}\right\}$ (d) $\left\{1, -\frac{4}{3}\right\}$ 18. if $f(x) = 1 - \frac{1}{x}$ then $f[f(\frac{1}{x})]$ is: (a) $\frac{1}{x-1}$ (b) $\frac{x}{x-1}$ (c) $\frac{1}{1+x}$ (d) $\frac{1}{x}$

19. The composite mapping fog of the maps f: $\mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \sin x$, $g: \mathbb{R} \rightarrow \mathbb{R}$, $g(x) = x^2$ is:

(a)
$$\sin x^2$$
 (b) $(\sin x)^2$ (c) $\sin x + x^2$ (d) $\frac{\sin x}{x^2}$

20. Which of the following function is a polynomial function?4

(a)
$$\frac{2x^2+7x+4}{3}$$
 (b) $2x^2 + x^{\frac{2}{3}} + 4$ (c) $\frac{x^2-1}{x+4}$, $x \neq -4$ (d) $x^4 + x^3 + 3x^2 - 7x + \sqrt{2}x^{-2}$

21. Which of the following is a rational function?

(a)
$$\frac{1}{3}\sqrt{4x^3 + 4x + 7}$$
 (b) $\frac{3x^2 - 7x + 1}{x - 2}$, $x \neq 2$
(c) $\frac{3x^5 + 5x^3 + 2x + 7}{x^{\frac{3}{2}}}$, $x > 0$ (d) $\frac{\sqrt{1 + x}}{2 + 5x}$, $x \neq -\frac{2}{5}$

22. Which of the following function is an even function

(a)
$$f(x) = \frac{a^x + a^{-x}}{a^x - a^{-x}}$$
 (b) $f(x) = \frac{a^x + 1}{a^x - 1}$ (c) $f(x) = x \frac{a^x - 1}{a^x + 1}$ (d) $f(x) = \log_2(x + \sqrt{x^2 + 1})$

23. which of the following functions is an onto function?

(a) $f(x) = \sqrt{1 + x + x^2} + \sqrt{1 - x + x^2}$ (b) $f(x) = x \frac{a^{x+1}}{a^{x-1}}$ (c) $f(x) = \log\left(\frac{1-x}{1+x}\right)$ (d) f(x)=k(constant). 24. The Period of $\frac{|\sin x| + |\cos x|}{|\sin x - \cos x|}$ is: (a) 2π (b) π (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$

25. Which of the following function from $A=\{x:-1 \le x \le 1\}$ to itself is a bijection?

(a) f(x) = |x| (b) $f(x) = x^2$ (c) $f(x) = \frac{x}{2}$ (d) $f(x) = \sin\left(\frac{\pi x}{2}\right)$

26. if f is any function , then $\frac{1}{2}[f(x) + f(-x)]$ is always

(a) one-one (b) neither even nor odd (c) even (d) odd

27. Which of the following function is not onto?

(a)
$$f: R \to R, f(x) = 3x + 5$$

(b) $f: R \to R^+, f(x) = x^2 + 4$
(c) $f: R^+ \to R^+, f(x) = \sqrt{x}$
(d) None of these

ANSWERS

1	d	2	C	3	c	4	b	5	b	6	d	7	d	8	b	9	b
10	a	11	b	12	c	13	b	14	c	15	a	16	b	17	a	18	b
19	a	20	a	21	b	22	c	23	c	24	b	25	d	26	c	27	b