Relations and Functions

Definitions:

Let A and B be two non-empty sets, then a function f from set A to set B is a rule which associates each element of A to a unique element of B.

- Relation

If $(a, b) \in R$, we say that a is related to b under the relation R and we write as a Rb

- Function

It is represented as $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and function is also called mapping.

- Real Function
$f: A \rightarrow B$ is called a real function, if A and B are subsets of R.
- Domain and Codomain of a Real Function

Domain and codomain of a function f is a set of all real numbers x for which $f(x)$ is a real number. Here, set A is domain and set B is codomain.

- Range of a real function
f is a set of values $f(x)$ which it attains on the points of its domain

Types of Relations

- A relation R in a set A is called Empty relation, if no element of A is related to any element of

$$
\text { A, i.e., } \mathrm{R}=\varphi \subset \mathrm{A} \times \mathrm{A} \text {. }
$$

- A relation R in a set A is called Universal relation, if each element of A is related to every element of A , i.e., $\mathrm{R}=\mathrm{A} \times \mathrm{A}$.
- Both the empty relation and the universal relation are sometimes called Trivial Relations
- A relation R in a set A is called
- Reflexive
- if $(a, a) \in R$, for every $a \in A$,
- Symmetric
- If $\left(a_{1}, a_{2}\right) \in R$ implies that $\left(a_{2}, a_{1}\right) \in R$, for all $a_{1}, a_{2} \in A$.
- Transitive
- If $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ implies that $\left(a_{1}, a_{3}\right) \in R$, for all a_{1}, a_{2}, $a_{3} \in A$.
- A relation R in a set A is said to be an equivalence relation if R is reflexive,
symmetric and transitive
- The set E of all even integers and the set O of all odd integers are subsets of Z satisfying following conditions:
- All elements of E are related to each other and all elements of O are related to each other.
- No element of E is related to any element of O and vice-versa.
- E and O are disjoint and $\mathrm{Z}=\mathrm{E} \cup \mathrm{O}$.
- The subset E is called the equivalence class containing zero, Denoted by [o].
- O is the equivalence class containing 1 and is denoted by [1].
- Note
- $\quad[\mathrm{O}] \neq[1]$
- $[\mathrm{O}]=[2 \mathrm{R}]$
- $\quad[1]=[2 R+1], r \in Z$.
- Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into mutually disjoint subsets Ai called partitions or subdivisions of X satisfying:
- All elements of Ai are related to each other, for all i.
- No element of Ai is related to any element of $\mathrm{Aj}, \mathrm{i} \neq \mathrm{j}$.
- $\mathrm{U} A \mathrm{~A}=\mathrm{X}$ and $\mathrm{Ai} \cap \mathrm{Aj}=\varphi, \mathrm{i} \neq \mathrm{j}$.
- The subsets Ai are called equivalence classes.

Note:

- Two ways of representing a relation
- Roaster method
- Set builder method
- If $(a, b) \in R$, we say that a is related to b and we denote it as $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$.

Classification of Real Functions

Real functions are generally classified under two categories algebraic functions and transcendental functions.

1. Algebraic Functions

Some algebraic functions are given below
(i) Polynomial Functions If a function $y=f(x)$ is given by

$$
\begin{aligned}
f(x)=a_{0} x^{n}+a_{1} x^{n-1} & +a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n} \\
& =\sum_{i=0}^{n} a_{i} x^{n-i}
\end{aligned}
$$

where, $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers and n is any non -negative integer, then $f(x)$ is called a polynomial function in x .

If $\mathrm{a}_{0} \neq 0$, then the degree of the polynomial $\mathrm{f}(\mathrm{x})$ is n . The domain of a polynomial function is the set of real number R.
e.g., $y=f(x)=3 x^{5}-4 x^{2}-2 x+1$
is a polynomial of degree 5 .
(ii) Rational Functions If a function $y=f(x)$ is given by $f(x)=\varphi(x) / \Psi(x)$
where, $\varphi(\mathrm{x})$ and $\Psi(\mathrm{x})$ are polynomial functions, then $\mathrm{f}(\mathrm{x})$ is called rational function in x .
(iii) Irrational FunctionsThe algebraic functions containing one or more terms having nonintegral rational power x are called irrational functions.
e.g., $y=f(x)=2 \sqrt{ } x-{ }^{3} \sqrt{x}+6$

2. Transcendental Function

A. function, which is not algebraic, is called a transcendental function. Trigonometric, Inverse trigonometric, Exponential, Logarithmic, etc are transcendental functions.

Explicit and Implicit Functions

(i) Explicit Functions A function is said to be an explicit function, if it is expressed in the form $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
(ii) Implicit Functions A function is said to be an implicit function, if it is expressed in the form $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{C}$, where C is constant.
e.g., $\sin (x+y)-\cos (x+y)=2$
(i) The set of real numbers x , such that $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ is called a closed interval and denoted by [a, b] i.e., $\{x: x \in R, a \leq x \leq b\}$.
(ii) Set of real number x, such that $a<x<b$ is called open interval and is denoted by (a,b) i.e., $\{x: x \in R, a<x<b\}$
(iii) Intervals [a,b) $=\{x: x \in R, a \leq x \leq b\}$ and $(a, b]=\{x: x \neq R, a<x \leq b\}$ are called semiopen and semi-closed intervals.

Graph of Real Functions

1. Constant Function Let \mathbf{c} be a fixed real number.

The function that associates to each real number x , this fixed number c is called a constant function i.e., $y=f(x)=c$ for all $x \in R$.

Domain of $f(x)=R$
Range of $f(x)=\{c\}$

2. Identity Function

The function that associates to each real number x for the same number x, is called the identity function. i.e., $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in$
R. Domain of $f(x)=R$

Range $f(x)=R$

3. Linear Function

If a and b be fixed real numbers, then the linear function is defmed as $y=f(x)=a x+b$, where a and b are constants.

Domain of $f(x)=R$
Range of $f(x)=R$
The graph of a linear function is given in the following diagram, which is a straight line with slope a.

4. Quadratic Function

If a, b and c are fixed real numbers, then the quadratic function is expressed as $y=f(x)=a x^{2}+$ $b x+c, a \neq 0 \Rightarrow y=a(x+b / 2 a)^{2}+4 a c-b^{2} / 4 a$
which is equation of a parabola in downward, if $\mathrm{a}<0$ and upward, if $\mathrm{a}>0$ and vertex at $(-\mathrm{b} /$ $\left.2 a, 4 a c-b^{2} / 4 a\right)$.

Domain of $f(x)=R$
Range of $f(x)$ is $\left[-\infty, 4 a c-b^{2} / 4 a\right.$], if $a<0$ and $\left[4 a c-b^{2} / 4 a, \infty\right]$, if $a>05$. Square Root Function Square root function is defined by $y=F(x)=\sqrt{ } x, x \geq 0$.

5. Square Root Function

Square root function is defined by $y=F(x)=\sqrt{ } x, x \geq 0$.
Domain of $f(x)=[0, \infty)$
Range of $f(x)=[0, \infty)$

6. Exponential Function

Exponential function is given by $y=f(x)=a^{x}$, where $a>0, a \neq 1$.

7. Logarithmic Function

A logarithmic function may be given by $\mathrm{y}=\mathrm{f}(\mathrm{x})=\operatorname{loga} \mathrm{x}$, where $\mathrm{a}>0, \mathrm{a} \neq 1$ and $\mathrm{x}>0$.
The graph of the function is as shown below. which is increasing, if a>1 and decreasing, if 0 $<\mathrm{a}<1$.

Domain of $f(x)=(0, \infty)$
Range of $f(x)=R$

8. Power Function

The power function is given by $y=f(x)=x^{n}, n \in I, n \neq 1,0$. The domain and range of the graph y $=\mathrm{f}(\mathrm{x})$, is depend on n .
(a) If n is positive even integer.

i.e., $f(x)=x^{2}, x^{4}, \ldots$.

Domain of $f(x)=R$
Range of $f(x)=[0, \infty)$
(b) If n is positive odd integer.

i.e., $f(x)=x^{3}, x^{5}, \ldots$.

Domain of $f(x)=R$
Range of $f(x)=R$
(c) If n is negative even integer.
i.e., $f(x)=x^{-2}, x^{-4}, \ldots$.

Domain of $f(x)=R-\{0\}$
Range of $f(x)=(0, \infty)$
(d) If n is negative odd integer.

i.e., $f(x)=x^{-1}, x^{-3}, \ldots$.

Domain of $f(x)=R-\{0\}$
Range of $f(x)=R-\{0\}$

9. Modulus Function (Absolute Value Function)

Modulus function is given by $y=f(x)=|x|$, where $|x|$ denotes the absolute value of x, that is $|x|=\{x$, if $x \geq 0,-x$, if $x<0$

Domain of $f(x)=R$
Range of $f(x)=[0, \& i n f i ;)$

10. Signum Function

Signum function is defined as follows

$$
y=f(x)=\left\{\begin{array} { c }
{ \frac { | x | } { x } , \text { if } x \neq 0 } \\
{ 0 , \text { if } x = 0 }
\end{array} \text { or } \left\{\begin{array}{c}
\frac{x}{|x|}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.\right.
$$

Symbolically, signum function is denoted by $\operatorname{sgn}(x)$.

Thus,

$$
y=f(x)=\operatorname{sgn}(x)
$$

where, sgn $(x)=\left\{\begin{array}{l}\frac{|x|}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}=\left\{\begin{array}{r}-1, \text { if } x<0 \\ 0, \text { if } x=0 \\ 1, \text { if } x>0\end{array}\right.\right.$
Domain of $f(x)=R$
Range of $f(x)=\{-1,0,1\}$

The greatest integer function is defined as $y=f(x)=[x]$
where, $[x]$ represents the greatest integer less than or equal to x. i.e., for any integer $n,[x]=n$, if $n \leq x<n+1$ Domain of $f(x)=R$ Range of $f(x)=$ I

Properties of Greatest Integer Function

(i) $[\mathrm{x}+\mathrm{n}]=\mathrm{n}+[\mathrm{x}], \mathrm{n} \in \mathrm{I}$
(ii) $\mathrm{x}=[\mathrm{x}]+\{\mathrm{x}\},\{\mathrm{x}\}$ denotes the fractional part of x .
(iii) $[-x]=-[x],-x \in I$
(iv) $[-x]=-[x]-1, x \in I$
(v) $[\mathrm{x}] \geq \mathrm{n} \Rightarrow \mathrm{x} \geq \mathrm{n}, \mathrm{n} \in \mathrm{I}$
(vi) $[\mathrm{x}]>\mathrm{n} \Rightarrow \mathrm{x} \Rightarrow \mathrm{n}+1, \mathrm{n} \in \mathrm{I}$
(vii) $[\mathrm{x}] \leq \mathrm{n} \Rightarrow \mathrm{x}<\mathrm{n}+1, \mathrm{n} \in \mathrm{I}$
(viii) $[\mathrm{x}]<\mathrm{n} \Rightarrow \mathrm{x}<\mathrm{n}, \mathrm{n} \in \mathrm{I}$
(ix) $[x+y]=[x]+[y+x-[x\}]$ for all $x, y \in R$
(x) $[\mathrm{x}+\mathrm{y}] \geq[\mathrm{x}]+[\mathrm{y}]$
(xi) $[\mathrm{x}]+[\mathrm{x}+1 / \mathrm{n}]+[\mathrm{x}+2 / \mathrm{n}]+\ldots+[\mathrm{x}+\mathrm{n}-1 / \mathrm{n}]=[\mathrm{nx}], \mathrm{n} \in \mathrm{N}$

12. Least Integer Function

The least integer function which is greater than or equal to x and it is denoted by (x). Thus, $(3.578)=4,(0.87)=1,(4)=4,(-8.239)=-8,(-0.7)=0$

In general, if n is an integer and x is any real number between n and $(\mathrm{n}+1)$.
i.e., $\mathrm{n}<\mathrm{x} \leq \mathrm{n}+1$, then $(\mathrm{x})=\mathrm{n}+1$
$\therefore \mathrm{f}(\mathrm{x})=(\mathrm{x})$
Domain of $f=R$
Range of $f=[x]+1$

13. Fractional Part Function

It is denoted as $f(x)=\{x\}$ and defined as
(i) $\{\mathrm{x}\}=\mathrm{f}$, if $\mathrm{x}=\mathrm{n}+\mathrm{f}$, where $\mathrm{n} \in \mathrm{I}$ and $0 \leq \mathrm{f}<1$
(ii) $\{\mathrm{x}\}=\mathrm{x}-[\mathrm{x}]$

i.e., $\{\mathrm{O} .7\}=0.7,\{3\}=0,\{-3.6\}=0.4$
(iii) $\{x\}=x$, if $0 \leq x \leq 1$
(iv) $\{x\}=0$, if $x \in I$
(v) $\{-x\}=1-\{x\}$, if $x \neq I$

Graph of Trigonometric Functions

1. Graph of $\sin x$

(i) Domain $=\mathrm{R}$
(ii) Range $=[-1,1]$
(iii) Period $=2 \pi$

2. Graph of $\cos x$

(i) Domain $=\mathrm{R}$
(ii) Range $=[-1,1]$
(iii) Period $=2 \pi$

3.Graph of $\tan x$

(i) Domain $=\mathrm{R} \sim(2 \mathrm{n}+1) \pi / 2, \mathrm{n} \in \mathrm{I}$
(ii) Range $=[-\& i n f i ;$, \&infi; $]$
(iii) Period $=\pi$

4. Graph of $\cot x$

(i) Domain $=\mathrm{R} \sim \mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$
(ii) Range $=[-$ \&infi;, \&infi; $]$
(iii) Period $=\pi$

5. Graph of sec x

(i) Domain $=\mathrm{R} \sim(2 \mathrm{n}+1) \pi / 2, \mathrm{n} \in \mathrm{I}$
(ii) Range $=[-\& i n f i ;, 1] \cup[1, \& i n f i ;)$
(iii) Period $=2 \pi$

6. Graph of cosec x

(i) Domain $=\mathrm{R} \sim \mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$
(ii) Range $=[-\& i n f i ;,-1] \cup[1, \& i n f i ;)$
(iii) Period $=2 \pi$

Operations on Real Functions

Let $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{R}$ be two real functions, then
(i) Sum The sum of the functions f and g is defined as $f+g: X \rightarrow R$ such that $(f+g)(x)=f(x)$ $+\mathrm{g}(\mathrm{x})$.
(ii) Product The product of the functions fond g is defined as $f g$: $X \rightarrow R$, such that $(\mathrm{fg})(\mathrm{x})=$ $f(x) g(x)$ Clearly, $f+g$ and $f g$ are defined only, if f and g have the same domain. In case, the domain of f and g are different. Then, Domain of $f+g$ or $f g=$ Domain of $f \cap$ Domain of g. (iii) Multiplication by a Number Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ be a function and let e be a real number . Then, we define $\mathrm{cf}: \mathrm{X} \rightarrow \mathrm{R}$, such that $(\mathrm{cf})(\mathrm{x})=\mathrm{cf}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{X}$.
(iv)Composition (Function of Function) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions. We define oof : A $\rightarrow \mathrm{C}$, such that got $(\mathrm{c})=\mathrm{g}(\mathrm{f}(\mathrm{x})), \forall \mathrm{x} \in \mathrm{A}$
Alternate There exists $Y \in B$, such that if $f(x)=y$ and $g(y)=z$, then $\operatorname{got}(x)=z$

Periodic Functions

A function $f(x)$ is said to be a periodic function of x, provided there exists a real number $T>0$, such that $\mathrm{F}(\mathrm{T}+\mathrm{x})=\mathrm{f}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{R}$

The smallest positive real number T, satisfying the above condition is known as the period or the fundamental period of $f(x)$..

Testing the Periodicity of a Function

(i) Put $f(T+x)=f(x)$ and solve this equation to find the positive values of T independent of x.
(ii) If no positive value of T independent of x is obtained, then $f(x)$ is a non-periodic function.
(iii) If positive val~esofT independent of x are obtained, then $f(x)$ is a periodic function and the least positive value of T is the period of the function $f(x)$.

Important Points to be Remembered

(i) Constant function is periodic with no fundamental period.
(ii) If $f(x)$ is periodic with period T, then $1 / f(x)$ and. $\sqrt{ } f(x)$ are also periodic with $f(x)$ same period T.
\{iii\} If $f(x)$ is periodic with period T_{1} and $g(x)$ is periodic with period T_{2}, then $f(x)+g(x)$ is periodic with period equal to LCM of T_{1} and T_{2}, provided there is no positive k, such that $f(k+$ $x)=g(x)$ and $g(k+x)=f(x)$.
(iv) If $f(x)$ is periodic with period T, then $\mathrm{kf}(\mathrm{ax}+\mathrm{b})$ is periodic with period $\mathrm{T} /|\mathrm{a}|$ ' where a, b , $\mathrm{k} \in \mathrm{R}$ and $\mathrm{a}, \mathrm{k} \neq 0$.
(v) $\sin x, \cos x, \sec x$ and $\operatorname{cosec} x$ are periodic functions with period 2π.
(vi) $\tan x$ and $\cot x$ are periodic functions with period π.
(vii) $|\sin x|,|\cos x|,|\tan x|,|\cot x|,|\sec x|$ and $|\operatorname{cosec} x|$ are periodic functions with period π.
(viii) $\sin ^{n} \mathrm{x}, \cos ^{\mathrm{n}} \mathrm{x}, \sec ^{\mathrm{n}} \mathrm{x}$ and $\operatorname{cosec}^{\mathrm{n}} \mathrm{x}$ are periodic functions with period 2π when n is odd, or π when n is even .
(ix) $\tan ^{n} x$ and $\cot ^{n} x$ are periodic functions with period π.
(x) $|\sin \mathrm{x}|+|\cos \mathrm{x}|,|\tan \mathrm{x}|+|\cot \mathrm{x}|$ and $|\sec \mathrm{x}|+|\operatorname{cosec} \mathrm{x}|$ are periodic with period $\pi / 2$.

Even and Odd Functions

Even Functions A real function $f(x)$ is an even function, if $f(-x)=f(x)$.
Odd Functions A real function $f(x)$ is an odd function, if $f(-x)=-f(x)$.

Properties of Even and Odd Functions

(i) Even function \pm Even function $=$ Even function.
(ii) Odd function \pm Odd function $=$ Odd function.
(iii) Even function $*$ Odd function $=$ Odd function.
(iv) Even function $*$ Even function $=$ Even function.
(v) Odd function * Odd function $=$ Even function.
(vi) gof or fog is even, if anyone of f and g or both are even.
(vii) gof or fog is odd, if both of f and g are odd.
(viii) If $f(x)$ is an even function, then $d / d x f(x)$ or $\int f(x) d x$ is odd and if $d x$.. $f(x)$ is an odd function, then $d / d x f(x)$ or $\int f(x) d x$ is even.
(ix) The graph of an even function is symmetrical about Y-axis.
(x) The graph of an odd function is symmetrical about origin or symmetrical in opposite quadrants.
(xi) An even function can never be one-one, however an odd function mayor may not be oneone.

Different Types of Functions (Mappings)

1. One-One and Many-One Function

The mapping $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a called one-one function, if different elements in A have different images in B. Such a mapping is known as injective function or an injection.

Methods to Test One-One

(i) Analytically If $x_{1}, x_{2} \in A$, then $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ or equivalently $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq$ $\mathrm{f}\left(\mathrm{x}_{2}\right)$
(ii) Graphically If any .line parallel to x -axis cuts the graph of the function atmost at one point, then the function is one-one.
(iii) Monotonically Any function, which is entirely increasing or decreasing in whole domain, then $f(x)$ is one-one.
Number of One-One Functions Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function, such that A and B are finite sets having m and n elements respectively, (where, $n>m$).
The number of one-one functions $n(n-1)(n-2) \ldots(n-m+1)=\left\{{ }^{n} P_{m}, n \geq m, 0, n<m\right.$ The function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is called many - one function, if two or more than two different elements in A have the same image in B.

2. Onto (Surjective) and Into Function

If the function $f: A \rightarrow B$ is such that each element in B (codomain) is the image of atleast one element of A, then we say that f is a function of A 'onto' B.
Thus, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(\mathrm{A})=$ i.e., Range $=$ Codomain Note Every polynomial function f: R $\rightarrow R$ of degree odd is onto.
Number of Onto (surjective) Functions Let A and B are finite sets having mand n elements respectively, such that $1 \leq n \leq m$, then number of onto (surjective) functions from A to B is ${ }^{n} \Sigma_{r}$ $=1(-1)^{\mathrm{n}-\mathrm{r}} \mathrm{C}_{\mathrm{r}} \mathrm{r}^{\mathrm{m}}=$ Coefficient of f^{n} in $\mathrm{n}!\left(\mathrm{e}^{\mathrm{x}}-1\right)^{\mathrm{r}}$ If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is such that there exists atleast one element in codomain which is not the image of
Thus, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(\mathrm{A}) \subset \mathrm{B}$
i.e., Range \subset Codomain

Important Points to be Remembered

(i) If f and g are injective, then fog and gof are injective.
(ii) If f and g are surjective, then fog is surjective.
(iii) Iff and g are bijective, then fog is bijective.

Composition of Functions and Invertible

Function Composite Function

- Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.
- Then the composition of f and g, denoted by $\boldsymbol{g} \circ \boldsymbol{f}$, is defined as the function $\boldsymbol{g} \circ \boldsymbol{f}: \mathrm{A}$ \rightarrow C given by
$g \circ f(x)=g(f(x)), \forall x \in A$.

- Eg
$: \circ$ Let $:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $\mathrm{g}:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions - Defined as $f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$ and $g(5)=$ $\mathrm{g}(9)=11$.
- Find go f.
- Solution
- $\mathrm{g} \circ \mathrm{f}(2)=\mathrm{g}(\mathrm{f}(2))=\mathrm{g}(3)=7$,
- $\mathrm{g} \circ \mathrm{f}(3)=\mathrm{g}(\mathrm{f}(3))=\mathrm{g}(4)=7$,
- $g \circ f(4)=g(f(4))=g(5)=11$ and
- $\operatorname{gof}(5)=g(5)=11$
- It can be verified in general that gof is one-one implies that f is one-one. Similarly, gof is onto implies that g is onto.
- While composing f and g , to get gof, first f and then g was applied, while in the reverse process of the composite gof, first the reverse process of g is applied and then the reverse process off.
- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a function such that there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=$ IX and fog $=$ IY, then f must be one-one and onto.

Invertible Function

- A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is defined to be invertible, if there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=I X$ and fog $=I Y$. The function g is called the inverse of f
- Denoted by f^{-1}.

- Thus, if f is invertible, then f must be one-one and onto and conversely, if f is oneone and onto, then f must be invertible.

Theorem 1

- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{h}: \mathrm{Z} \rightarrow \mathrm{S}$ are functions, then

○ ho (gof) $=(\mathrm{hog}) \circ \mathrm{f}$.

- Proof

We have
$\circ \mathrm{ho}(\mathrm{g} \circ \mathrm{f})(\mathrm{x})=\mathrm{h}(\mathrm{g} \circ \mathrm{f}(\mathrm{x}))=\mathrm{h}(\mathrm{g}(\mathrm{f}(\mathrm{x}))), \forall \mathrm{x}$ in X

- (hog) of $(x)=h o g(f(x))=h(g(f(x))), \forall x$ in X.

Hence, $\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})=(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}$
Theorem 2

- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two invertible functions.
- Then gof is also invertible with (go f) ${ }^{-1}=f^{-1} \circ$

$$
g^{-1}
$$

- Proof
- To show that gof is invertible with ($\mathrm{g} \circ \mathrm{f})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}$, it is enough to show that $\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \circ(\mathrm{g} \circ \mathrm{f})=I X$ and $(\mathrm{g} \circ \mathrm{f}) \circ(\mathrm{f}-1 \circ$ g^{-1}) I Z.

Now, $\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \circ(\mathrm{g} \circ \mathrm{f})=\left(\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \circ \mathrm{g}\right)$ of, by Theorem 1

$$
\begin{aligned}
& =\left(f-1 \circ \quad\left(g^{-1} \circ g\right)\right) \text { of, by Theorem } 1 \\
& =(f-1 \circ \quad I Y) \text { of, by definition of } g^{-1} \\
& =I X
\end{aligned}
$$

Similarly, it can be shown that ($\mathrm{g} \circ \mathrm{f}$) $\circ\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right)=\mathrm{IZ}$

Binary Operations

Definitions:

- A binary operation $*$ on a set A is a function $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$. We denote $*(\mathrm{a}, \mathrm{b})$ by a * b.
- A binary operation $*$ on the set X is called commutative, if $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$, for every a , $b \in X$
- A binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ is said to be associative if $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c}), \forall$ $\mathrm{a}, \mathrm{b}, \mathrm{c}, \in \mathrm{A}$.
- A binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$, an element $\mathrm{e} \in \mathrm{A}$, if it exists, is called identity for the operation $*$, if $a * e=a=e * a, \forall a \in A$.
- Zero is identity for the addition operation on R but it is not identity for the addition operation on N , as o $\notin \mathrm{N}$.
- Addition operation on N does not have any identity.
- For the addition operation $+: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$, given any $\mathrm{a} \in \mathrm{R}$, there exists - a in R such that $a+(-a)=0$ (identity for ' + ' $)=(-a)+a$.
- For the multiplication operation on R, given any a $\neq 0$ in R, we can choose ${ }^{1}$ such that a

$$
\mathrm{X}_{a}^{1}=1 \text { (identity for }{ }^{‘} \times \text { ') }=\frac{1}{a}={ }^{1} \mathrm{X} \mathrm{a}
$$

- A binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the identity element e in A , an element $\mathrm{a} \in$ A is said to be invertible with respect to the operation $*$, if there exists an element b in A such that $a * b=e=b * a$ and b is called the inverse of a and is denoted by a^{-1}

MCQ

1. Let $n(A)=m$ and $n(B)=n$. Then the total number of non empty relations that can be defined from A to B is:
(a) m^{n}
(b) $\mathrm{n}^{\mathrm{m}}-1$
(c) $\mathrm{mn}-1$
(d) $2^{m n}-1$
2. Let $A=\{1,2,3\}$. The total number of distinct relation which can be defined over A is:
(a) 6
(b) 8
(c) 2^{9}
(d) None of these
3. Let $A=\{1,2,3,4\}$ and $R=\{(2,2),(3,3),(4,4),(1,2)\}$ be relation on A. Then A is:
(a)reflexive
(b) symmetric
(c) transitive
(d) None of these
4. The void relation on a Set A is:
(a) reflexive
(b) symmetric and transitive
(c) reflexive and symmetric
(d) reflexive and transitive
5. The relation 'is subset of' on the power set $P(A)$ of a set A is:
(a) symmetric
(b) anti-symmetric
(c) equivalence relation
(d) None of these
6. The relation 'congruence modulo m ' is :
(a) reflexive only
(b) symmetric only
(c) transitive only
(d) an equivalence relation.
7. Let R be the relation over the set $N \times N$ and is defined by $(a, b) R(c, d) \Longrightarrow a+d=b+c$. Then R is:
(a) reflexive only
(b) symmetric only
(c) transitive only
(d) an equivalence relation.
8. Let $P=\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$. Then P is:
(a) reflexive
(b) symmetric
(c) transitive
(d) anti-symmetric
9. Let R be a relation on a Set A such that $R=R^{-1}$. Then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) None of these.
10. Let a relation R in the set of natural numbers be defined by $(x, y) \in R \Leftrightarrow x^{2}-4 x y+3 y^{2}=0$ for all $x, y \in N$. Then the relation R is :
(a) reflexive
(b) symmetric
(c) transitive
(d) an equivalence relation.
11. Let $A=\{1,2,3\}$. Then the relation $R=\{(2,3)$ in A is:
(a) symmetric only
(b) transitive only
(c) Symmetric and transitive only
(d) None of these
12. Two points A and B in a Place are related if $O A=O B$. Where O is a fixed point. This relation is:
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) equivalence relation
(d) partial order relation
13. The relation R defined in $A=\{1,2,3\}$ by a R b if $\left|a^{2}-b^{2}\right| \leq 5$. Which of the following is not true?
(a) Domain of $R=\{1,2,3\}$
(b) Range of $\mathrm{R}=\{5\}$
(c) $R=R^{-1}$
(d) $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)\}$
14. Let R be a relation in the set of natural numbers defined by $R=\left\{\left(1+x, 1+x^{2}\right): x \leq 5\right.$, $x \in N\}$. Which of the following
is false
(a)Domain of $\mathrm{R}=\{2,3,4,5,6\}$
(b) Range of $\mathrm{R}=\{2,5,10,17,26\}$
(c) $R=\{(2,2),(3,5),(4,10),(5,17),(6,26)\}$
(d) At least one is false.
15. The domain of the function f is defined by $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-6}$ is given by:
(a) $\mathrm{R}-\{3,-2\}$
(b) $R-\{-3,2\}$
(c) $\mathrm{R}-[3,-2]$
(d) $\mathrm{R}-(3,-2)$
16. The domain and range of the function f given by $: f(x)=2-|x-5|$ is:
(a) Domain $=R^{+}$, Range $=(-\infty, 1]$
(b) Domain=R, Range $=(-\infty$, 2]
(c) Domain $=\mathrm{R}$, Range $=(-\infty, 2)$
(d) Domain $=\mathrm{R}^{+}$, Range $=(-\infty, 2]$
17. The domain for which the function defined by: $f(x)=3 x^{2}-1$ and $g(x)=3+x$ is equal to:
(a) $\left\{-1, \frac{4}{3}\right\}$
(b) $\left\{-1,-\frac{4}{3}\right\}$
(c) $\left\{1, \frac{4}{3}\right\}$
(d) $\left\{1,-\frac{4}{3}\right\}$
18.if $\mathrm{f}(\mathrm{x})=1-\frac{1}{x}$ then $f\left[f\left(\frac{1}{x}\right)\right]$ is:
(a) $\frac{1}{x-1}$
(b) $\frac{x}{x-1}$
(c) $\frac{1}{1+x}$
(d) $\frac{1}{x}$
19.The composite mapping fog of the maps $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, f(x)=\sin x, g: R \rightarrow R, g(x)=$ x^{2} is:
(a) $\sin x^{2}$
(b) $(\sin x)^{2}$
(c) $\sin x+x^{2}$
(d) $\frac{\sin x}{x^{2}}$
18. Which of the following function is a polynomial function?4
(a) $\frac{2 x^{2}+7 x+4}{3}$
(b) $2 x^{2}+x^{\frac{2}{3}}+4$
(c) $\frac{x^{2}-1}{x+4}, x \neq-4$
(d) $x^{4}+x^{3}+3 x^{2}-7 x+$ $\sqrt{2} x^{-2}$
19. Which of the following is a rational function?
(a) $\frac{1}{3} \sqrt{4 x^{3}+4 x+7}$
(b) $\frac{3 x^{2}-7 x+1}{x-2}, x \neq 2$
(c) $\frac{3 x^{5}+5 x^{3}+2 x+7}{x^{\frac{3}{2}}}, x>0$
(d) $\frac{\sqrt{1+x}}{2+5 x}, x \neq-\frac{2}{5}$
20. Which of the following function is an even function
(a) $f(x)=\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}$
(b) $f(x)=\frac{a^{x}+1}{a^{x}-1}$
(c) $f(x)=x \frac{a^{x}-1}{a^{x}+1}$
(d) $f(x)=$
$\log _{2}\left(x+\sqrt{x^{2}+1}\right)$
21. which of the following functions is an onto function?
(a) $f(x)=\sqrt{1+x+x^{2}}+\sqrt{1-x+x^{2}}$
(b) $f(x)=x \frac{a^{x}+1}{a^{x}-1}$
(c) $f(x)=\log \left(\frac{1-x}{1+x}\right)$
(d) $f(x)=k$ (constant).
22. The Period of $\frac{|\sin x|+|\cos x|}{|\sin x-\cos x|}$ is:
(a) 2π
(b) π
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
23. Which of the following function from $A=\{x:-1 \leq x \leq 1\}$ to itself is a bijection?
(a) $f(x)=|x|$
(b) $f(x)=x^{2}$
(c) $f(x)=\frac{x}{2}$
(d) $f(x)=\sin \left(\frac{\pi x}{2}\right)$
24. if f is any function, then $\frac{1}{2}[f(x)+f(-x)]$ is always
(a) one-one
(b) neither even nor odd (c) even
(d) odd
25. Which of the following function is not onto?
(a) $f: R \rightarrow R, f(x)=3 x+5$
(b) $f: R \rightarrow R^{+}, f(x)=x^{2}+4$
(c) $f: R^{+} \rightarrow R^{+}, f(x)=\sqrt{x}$
(d) None of these

ANSWERS

1	\mathbf{d}	2	\mathbf{c}	3	\mathbf{c}	4	\mathbf{b}	5	\mathbf{b}	6	\mathbf{d}	7	\mathbf{d}	8	\mathbf{b}	9	\mathbf{b}
10	\mathbf{a}	11	\mathbf{b}	12	\mathbf{c}	13	\mathbf{b}	14	\mathbf{c}	15	\mathbf{a}	16	\mathbf{b}	17	\mathbf{a}	18	\mathbf{b}
19	\mathbf{a}	20	\mathbf{a}	21	\mathbf{b}	22	\mathbf{c}	23	\mathbf{c}	24	\mathbf{b}	25	\mathbf{d}	26	\mathbf{c}	27	\mathbf{b}

